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Four-dimensional matrix transformation
and rate of A-statistical convergence
of Bögel-type continuous functions
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Abstract. The purpose of this paper is to investigate the effects of four-
dimensional summability matrix methods on the A-statistical approxi-
mation of sequences of positive linear operators defined on the space of
all real valued Bögel-type continuous functions on a compact subset of
the real line. Furthermore, we study the rates of A-statistical conver-
gence in our approximation.
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1. Introduction

In order to improve the classical Korovkin theory, the space of Bögel-
type continuous (or, simply, B-continuous) functions instead of the classical
one has been used in [2, 3, 4, 5]. Recall that the concept of B-continuity was
first introduced in 1934 by Bögel [6] (see also [7, 8]). On the other hand,
this Korovkin theory has also been generalized via the concept of statistical
convergence (see, for instance, [11, 12]). It is well-known that every convergent
sequence (in the usual sense) is statistically convergent but its converse is
not always true. Also, statistical convergent sequences do not need to be
bounded. With these properties, the usage of the statistical convergence in
the approximation theory leads us to more powerful results than the classical
aspects.

We now recall some basic definitions and notations used in the paper.
A double sequence

x = {xm,n}, m, n ∈ N,



96 Fadime Dirik and Kamil Demirci

is convergent in Pringsheim’s sense if, for every ε > 0, there exists N =
N(ε) ∈ N such that |xm,n − L| < ε whenever m,n > N . Then, L is called
the Pringsheim limit of x and is denoted by P − lim x = L (see [19]). In this
case, we say that x = {xm,n} is “P -convergent to L”. Also, if there exists a
positive number M such that |xm,n| ≤ M for all (m,n) ∈ N2 = N× N, then
x = {xm,n} is said to be bounded. Note that in contrast to the case for single
sequences, a convergent double sequence not to be bounded.

Now let
A = [aj,k,m,n], j, k,m, n ∈ N,

be a four-dimensional summability matrix. For a given double sequence x =
{xm,n}, the A-transform of x, denoted by Ax := {(Ax)j,k}, is given by

(Ax)j,k =
∑

(m,n)∈N2

aj,k,m,nxm,n, j, k ∈ N,

provided the double series converges in Pringsheim’s sense for every (j, k) ∈
N2. In summability theory, a two-dimensional matrix transformation is said to
be regular if it maps every convergent sequence into a convergent sequence
with the same limit. The well-known characterization for two-dimensional
matrix transformations is known as Silverman-Toeplitz conditions (see, for
instance, [16]). In 1926, Robison [20] presented a four-dimensional analog
of the regularity by considering an additional assumption of boundedness.
This assumption was made because a double P -convergent sequence is not
necessarily bounded. The definition and the characterization of regularity
for four-dimensional matrices is known as Robison-Hamilton conditions, or
briefly, RH-regularity (see, [15, 20]).

Recall that a four dimensional matrix A = [aj,k,m,n] is said to be RH-
regular, if it maps every bounded P -convergent sequence into a P -convergent
sequence with the same P -limit. The Robison-Hamilton conditions state that
a four dimensional matrix A = [aj,k,m,n] is RH-regular if and only if

(i) P − lim
j,k

aj,k,m,n = 0 for each (m,n) ∈ N2,

(ii) P − lim
j,k

∑
(m,n)∈N2

aj,k,m,n = 1,

(iii) P − lim
j,k

∑
m∈N

|aj,k,m,n| = 0 for each n ∈ N,

(iv) P − lim
j,k

∑
n∈N

|aj,k,m,n| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2
|aj,k,m,n| is P−convergent for each (j, k) ∈ N2,

(vi) there exist finite positive integers A and B such that∑
m,n>B

|aj,k,m,n| < A

holds for every (j, k) ∈ N2.

Now let A = [aj,k,m,n] be a non-negative RH-regular summability ma-
trix, and let K ⊂ N2. Then, a real double sequence x = {xm,n} is said to be
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A-statistically convergent to a number L if, for every ε > 0,

P − lim
j,k

∑
(m,n)∈K(ε)

aj,k,m,n = 0,

where
K(ε) := {(m,n) ∈ N2 : |xm,n − L| ≥ ε}.

In this case, we write st
(2)
A − lim xm,n = L. Observe that, a P -convergent dou-

ble sequence is A-statistically convergent to the same value but the converse
does not hold. For example, consider the double sequence x = {xm,n} given
by

xm,n =
{

mn, if m and n are squares,
1, otherwise.

We should note that if we take A = C(1, 1), which is the double Cesáro
matrix, then C(1, 1)-statistical convergence coincides with the notion of sta-
tistical convergence for a double sequence, which was introduced in [17, 18].
Finally, if we replace the matrix A by the identity matrix for four-dimensional
matrices, then A-statistical convergence reduces to the Pringsheim conver-
gence.

In most investigations the approximated functions are assumed to be
continuous. However, the considered approximation processes are often mean-
ingful for a bigger class of functions, namely for so-called B−continuous func-
tions introduced by Bögel [6, 7, 8].

The definition of B−continuous was introduced by Bögel as follows:
Let X and Y be compact subsets of the real numbers, and let D = X×Y .

Then, a function f : D → R is called B−continuous at a point (x, y) ∈ D if,
for every ε > 0, there exists a positive number δ = δ(ε) such that

|∆x,y [f (u, v)]| < ε,

for any (u, v) ∈ D with |u− x| < δ and |v − y| < δ, where the symbol
∆x,y [f (u, v)] denotes the mixed difference of f defined by

∆x,y [f (u, v)] = f(u, v)− f(u, y)− f(x, v) + f(x, y).

By Cb(D) we denote the space of all B-continuous functions on D.
Recall that C(D) and B(D) denote the space of all continuous (in the usual
sense) functions and the space of all bounded functions on D, respectively.
Then, notice that C(D) ⊂ Cb(D). Moreover, one can find an unbounded
B−continuous function, which follows from the fact that, for any function of
the type f(u, v) = g(u)+h(v), we have ∆x,y [f (u, v)] = 0 for all (x, y), (u, v) ∈
D.

The usual supremum norm on the spaces B(D) is given by

‖f‖ := sup
(x,y)∈D

|f (x, y)| for f ∈ B(D).

Throughout the paper, for fixed (x, y) ∈ D and f ∈ Cb(D), we use the
function Fx,y defined as follows:

Fx,y(u, v) = f(u, y) + f(x, v)− f(u, v) for (u, v) ∈ D. (1.1)
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Since
∆x,y [Fx,y(u, v)] = −∆x,y [f(u, v)]

holds for all (x, y), (u, v) ∈ D, the B−continuity of f implies the
B−continuity of Fx,y for every fixed (x, y) ∈ D. We also use the following
test functions

e0(u, v) = 1, e1(u, v) = u, e2(u, v) = v and e3(u, v) = u2 + v2.

With this terminology the authors [14] proved the following theorem,
which corresponds to the A-statistical formulation of the problem above stud-
ied by Badea et. al. [3].

Theorem 1.1. [14] Let {Lm,n} be a double sequence of positive linear opera-
tors acting from Cb (D) into B (D) , and let A = [aj,k,m,n] be a non-negative
RH−regular summability matrix method. Assume that the following condi-
tions hold:

δ
(2)
A

{
(m,n) ∈ N2 : Lm,n(e0;x, y) = e0 (x, y) for all (x, y) ∈ D

}
= 1

and
st

(2)
A − lim

m,n
‖Lm,n(ei)− ei‖ = 0 for i = 1, 2, 3.

Then, for all f ∈ Cb(D), we have

st
(2)
A − lim

m,n
‖Lm,n(Fx,y)− f‖ = 0,

where Fx,y is given by (1.1).

The aim of the present paper is to compute the rates of A-statistical
approximation in Theorem 1.1 with the help of mixed modulus of smoothness.

2. Rate of A-statistical convergence

Various ways of defining rates of convergence in the A-statistical sense
for two-dimensional summability matrix were introduced in [10]. In a similar
way, for four-dimensional summability matrix, defining rates of convergence
in the A-statistical sense introduced in [13]. In this section, we compute the
corresponding rates of A-statistical convergence in Theorem 1.1 by means of
four different ways.

Definition 2.1. [13] Let A = [aj,k,m,n] be a non-negative RH-regular summa-
bility matrix and let {αm,n} be a positive non-increasing double sequence. A
double sequence x = {xm,n} is A-statistical convergent to a number L with
the rate of o(αm,n), if for every ε > 0,

P − lim
j,k→∞

1
αj,k

∑
(m,n)∈K(ε)

aj,k,m,n = 0,

where
K(ε) :=

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε

}
.
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In this case, it is denoted by

xm,n − L = st
(2)
A − o(αm,n) as m,n →∞.

Definition 2.2. [13] Let A = [aj,k,m,n] and {αm,n} be the same as in Definition
2.1. Then, a double sequence x = {xm,n} is A-statistical bounded with the
rate of O(αm,n) if for every ε > 0,

sup
j,k

1
αj,k

∑
(m,n)∈L(ε)

aj,k,m,n < ∞,

where
L(ε) :=

{
(m,n) ∈ N2 : |xm,n| ≥ ε

}
.

In this case, it is denoted by

xm,n = st
(2)
A −O(αm,n) as m,n →∞.

Definition 2.3. [13] Let A = [aj,k,m,n] and {αm,n} be the same as in Definition
2.1. Then, a double sequence x = {xm,n} is A-statistical convergent to a
number L with the rate of om,n(αm,n) if for every ε > 0,

P − lim
j,k→∞

∑
(m,n)∈M(ε)

aj,k,m,n = 0,

where
M(ε) :=

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε αm,n

}
.

In this case, it is denoted by

xm,n − L = st
(2)
A − om,n(αm,n) as m,n →∞.

Definition 2.4. [13] Let A = [aj,k,m,n] and {αm,n} be the same as in Definition
2.1. Then, a double sequence x = {xm,n} is A-statistical bounded with the
rate of Om,n(αm,n) if for every ε > 0,

P − lim
j,k

∑
(m,n)∈N(ε)

aj,k,m,n = 0,

where
N(ε) :=

{
(m,n) ∈ N2 : |xm,n| ≥ ε αm,n

}
.

In this case, it is denoted by

xm,n = st
(2)
A −Om,n(αm,n) as m,n →∞.

We see from the above statements that, in Definitions 2.1 and 2.2 the
rate sequence {αm,n} directly effects the entries of the matrix A = [aj,k,m,n]
although, according to Definitions 2.3 and 2.4, the rate is more controlled by
the terms of the sequence x = {xm,n}.

Using these definitions we have the following auxiliary result [13].

Lemma 2.5. [13] Let {xm,n} and {ym,n} be double sequences. Assume that
let A = [aj,k,m,n] be a non-negative RH-regular summability matrix and let
{αm,n} and {βm,n} be positive non-increasing sequences. If xm,n − L1 =
st

(2)
A − o(αm,n) and ym,n − L2 = st

(2)
A − o(βm,n), then we have
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(i) (xm,n − L1) ∓ (ym,n − L2) = st
(2)
A − o(γm,n) as m,n → ∞ , where

γm,n := max {αm,n, βm,n} for each (m,n) ∈ N2,

(ii) λ(xm,n − L1) = st
(2)
A − o(αm,n) as m,n →∞ for any real number λ.

Furthermore, similar conclusions hold with the symbol “o” replaced by “O”.

The above result can easily be modified to obtain the following result
similarly.

Lemma 2.6. [13] Let {xm,n} and {ym,n} be double sequences. Assume that
A = [aj,k,m,n] is a non-negative RH-regular summability matrix and let
{αm,n} and {βm,n} be positive non-increasing sequences. If xm,n − L1 =
st

(2)
A − om,n(αm,n) and ym,n − L2 = st

(2)
A − om,n(βm,n), then we have

(i) (xm,n − L1)∓ (ym,n − L2) = st
(2)
A − om,n(γm,n) as m,n →∞ , where

γm,n := max {αm,n, βm,n} for each (m,n) ∈ N2,

(ii) λ(xm,n −L1) = st
(2)
A − om,n(αm,n) as m,n →∞ for any real number

λ.
Furthermore, similar conclusions hold with the symbol “om,n” replaced by
“Om,n”.

Now we recall the concept of mixed modulus of smoothness. For f ∈
Cb (D), the mixed modulus of smoothness of f , denoted by ωmixed (f ; δ1, δ2),
is defined to be

ωmixed (f ; δ1, δ2) = sup {|∆x,y [f(u, v)]| : |u− x| ≤ δ1, |v − y| ≤ δ2}
for δ1, δ2 > 0. In order to obtain our result, we will make use of the elementary
inequality

ωmixed (f ;λ1δ1, λ2δ2) ≤ (1 + λ1) (1 + λ2)ωmixed (f ; δ1, δ2)

for λ1, λ2 > 0. The modulus ωmixed has been used by several authors in
the framework of “Boolean sum type” approximation (see, for example, [9]).
Elementary properties of ωmixed can be found in [21] (see also [1]) and in
particular for the case of B-continuous functions in [2].

Then we have the following result.

Theorem 2.7. Let {Lm,n} be a sequence of positive linear operators acting
from Cb (D) into B (D) and let A = [aj,k,m,n] be a non-negative RH−regular
summability matrix. Let {αm,n} and {βm,n} be a positive non-increasing dou-
ble sequence. Assume that the following conditions hold:

P − lim
j,k→∞

1
αj,k

∑
(m,n)∈K

aj,k,m,n = 1, (2.1)

where K =
{
(m,n) ∈ N2 : Lm,n(e0;x, y) = 1 for all (x, y) ∈ D

}
; and

ωmixed (f ; γm,n, δm,n) = st
(2)
A − o(βm,n) as m,n →∞, (2.2)

where γm,n :=
√
‖Lm,n(ϕ)‖ and δm,n :=

√
‖Lm,n(Ψ)‖ with ϕ(u, v) =

(u− x)2, Ψ(u, v) = (v − y)2. Then we have, for all f ∈ Cb (D),

‖Lm,n(Fx,y)− f‖ = st
(2)
A − o(cm,n) as m,n →∞,
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where Fx,y is given by (1.1) and cm,n := max {αm,n, βm,n} for each (m,n) ∈
N2. Furthermore, similar results hold when the symbol “o” is replaced by “O”.

Proof. Let (x, y) ∈ D and f ∈ Cb (D) be fixed. It follows from (2.1) that

P − lim
j,k→∞

1
αj,k

∑
(m,n)∈N2\K

aj,k,m,n = 0. (2.3)

Also, since
∆x,y [Fx,y(u, v)] = −∆x,y [f(u, v)] ,

we observe that

Lm,n (Fx,y;x, y)− f(x, y) = Lm,n (∆x,y [Fx,y(u, v)] ; x, y)

holds for all (m,n) ∈ K. Then, using the properties of ωmixed we obtain

|∆x,y [Fx,y(u, v)]| ≤ ωmixed (f ; |u− x| , |v − y|)

≤
(

1 +
1
δ1
|u− x|

) (
1 +

1
δ2
|v − y|

)
×ωmixed (f ; δ1, δ2) .

(2.4)

Hence, using the monotonicity and the linearity of the operators Lm,n, for
all (m,n) ∈ K, it follows from (2.4) that

|Lm,n(Fx,y;x, y)− f (x, y)|
= |Lm,n (∆x,y [Fx,y(u, v)] ; x, y)|
≤ Lm,n (|∆x,y [Fx,y(u, v)]| ;x, y)

≤ Lm,n

((
1 +

1
δ1
|u− x|

) (
1 +

1
δ2
|v − y|

)
;x, y

)
ωmixed (f ; δ1, δ2)

=
{

1 +
1
δ1

Lm,n (|u− x| ;x, y) +
1
δ2

Lm,n (|v − y| ;x, y)

1
δ1δ2

Lm,n (|u− x| . |v − y| ;x, y)
}

ωmixed (f ; δ1, δ2) .

Using the Cauchy-Schwarz inequality, we have

|Lm,n(Fx,y;x, y)− f (x, y)|

≤
{

1 +
1
δ1

√
Lm,n (ϕ;x, y) +

1
δ2

√
Lm,n (Ψ;x, y)

1
δ1δ2

√
Lm,n (ϕ;x, y)

√
Lm,n (Ψ;x, y)

}
ωmixed (f ; δ1, δ2)

(2.5)

for all (m,n) ∈ K. Taking supremum over (x, y) ∈ D on the both-sides of
inequality (2.5) we obtain, for all (m,n) ∈ K, that

‖Lm,n(Fx,y)− f‖ ≤ 4ωmixed (f ; γm,n, δm,n) (2.6)

where δ1 := γm,n :=
√
‖Lm,n(ϕ)‖ and δ2 := δm,n :=

√
‖Lm,n(Ψ)‖. Now,

given ε > 0, define the following sets:

U : =
{
(m,n) ∈ N2 : ‖Lm,n(Fx,y)− f‖ ≥ ε

}
,

U1 : =
{

(m,n) ∈ N2 : ωmixed (f ; γm,n, δm,n) ≥ ε

4

}
.
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Hence, it follows from (2.6) that

U ∩K ⊆ U1 ∩K,

which gives, for all (j, k) ∈ N2,
1

cj,k

∑
(m,n)∈U∩K

aj,k,m,n ≤ 1
cj,k

∑
(m,n)∈U1∩K

aj,k,m,n

≤ 1
cj,k

∑
(m,n)∈U1

aj,k,m,n

≤ 1
βj,k

∑
(m,n)∈U1

aj,k,m,n. (2.7)

where cm,n = max {αm,n, βm,n}. Letting j, k → ∞ (in any manner) in (2.7)
and from (2.2), we conclude that

P − lim
j,k→∞

1
cj,k

∑
(m,n)∈U∩K

aj,k,m,n = 0. (2.8)

Furthermore, we use the inequality∑
(m,n)∈U

aj,k,m,n =
∑

(m,n)∈U∩K

aj,k,m,n +
∑

(m,n)∈U∩(N2\K)

aj,k,m,n

≤
∑

(m,n)∈U∩K

aj,k,m,n +
∑

(m,n)∈N2\K

aj,k,m,n

which gives,
1

cj,k

∑
(m,n)∈U

aj,k,m,n ≤
1

cj,k

∑
(m,n)∈U∩K

aj,k,m,n +
1

αj,k

∑
(m,n)∈N2\K

aj,k,m,n.

(2.9)
Letting j, k → ∞ (in any manner) in (2.9) and from (2.8) and (2.3), we
conclude that

P − lim
j,k→∞

1
cj,k

∑
(m,n)∈U

aj,k,m,n = 0.

The proof is completed. �

The following similar result holds.

Theorem 2.8. Let {Lm,n} be a sequence of positive linear operators acting
from Cb (D) into B (D) and let A = [aj,k,m,n] be a non-negative RH−regular
summability matrix. Let {αm,n} and {βm,n} be a positive non-increasing dou-
ble sequence. Assume that the following conditions holds:

P − lim
j,k→∞

∑
(m,n)∈K

aj,k,m,n = 1, (2.10)

where K =
{
(m,n) ∈ N2 : Lm,n(e0;x, y) = 1 for all (x, y) ∈ R2

}
; and

ωmixed (f ; γm,n, δm,n) = st
(2)
A − om,n(βm,n) as m,n →∞, (2.11)
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where γm,n :=
√
‖Lm,n(ϕ)‖ and δm,n :=

√
‖Lm,n(Ψ)‖ with ϕ(u, v) =

(u− x)2, Ψ(u, v) = (v − y)2. Then we have, for all f ∈ Cb (D),

‖Lm,n(Fx,y)− f‖ = st
(2)
A − om,n(βm,n) as m,n →∞,

where Fx,y is given by (1.1). Similar results hold when little “om,n” is replaced
by capital “Om,n”.

3. Concluding remarks

1) Specializing the sequences {αm,n} and {βm,n} in Theorem 2.7 or
Theorem 2.8 we can easily get Theorem 1.1. Thus, Theorem 2.7 gives us the
rates of A−statistical convergence of the operators Lm,n from Cb (D) into
B (D).

2) Replacing the matrix A by a double identity matrix and taking
αm,n = βm,n = 1 for all m,n ∈ N, we get the ordinary rate of convergence of
the operators Lm,n.
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