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On elliptic partial differential equations with
random coefficients

Antje Mugler and Hans-Jörg Starkloff

Abstract. We consider stationary diffusion equations with random co-
efficients which cannot be bounded strictly away from zero and infinity
by constants. We prove the existence of a unique solution to the cor-
responding weak formulation with different solution and test function
spaces. Furthermore, the convergence of the Stochastic Galerkin solution
is established under certain conditions.
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1. Introduction

In recent years there has been a growing interest in quantifying uncertainty in
complex systems which are modeled via algebraic, ordinary or partial differen-
tial equations with random input data. For example, the stationary diffusion
equation with a random coefficient is an instructive model problem. Thus,
we consider the boundary value problem consisting of the random partial
differential equation

−∇ · (κ∇u) = f

and some suitable boundary conditions. Thereby, the coefficient κ and also
the forcing f are random functions. In previous works (see for example
Babuška et al. [1, 3, 4] or Schwab et al. [5, 6, 14]) it is often assumed that
there exist constants κ, κ > 0, such that

0 < κ ≤ κ(x, ω) ≤ κ a.e. and a.s.

Then the theorem of Lax-Milgram can be used to prove the existence of a
unique weak solution. In a first step towards a generalization of the problem
setting Galvis and Sarkis [9] as well as Gittelson [11] investigate this random
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partial differential equation where the coefficient is modeled as a lognormal
random field. That is, κ(x) = exp(G(x)) with a Gaussian random field G(x).
In this case, however, there do not exist constants κ, κ > 0 as above and
thus the Lax-Milgram theorem is not applicable. For this reason, the authors
employ alternative techniques to prove the existence and uniqueness of the
weak solution and to obtain a priori error estimates of the Stochastic Galerkin
approximation to this solution. In the following we generalize these results
to arbitrary random input fields which can be bounded by random variables
κmin, κmax > 0 a.s., that is,

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s.

2. Setting and problem formulation

Let D ⊂ Rd, d ∈ N, be a bounded Lipschitz domain and (Ω,A,P) a proba-
bility space. We consider the following boundary value problem

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) x ∈ D, ω ∈ Ω

u(x, ω) = 0 x ∈ ∂D, ω ∈ Ω (2.1)

with random coefficient κ and random forcing f . We assume that the coeffi-
cient function κ : D×Ω → R is a strongly measurable random variable with
values in L∞(D) and that there exist real-valued random variables κmin and
κmax such that

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s. (2.2)

We define the pathwise bilinear form b(·, ·;ω) : H1(D)×H1(D) → R by

b(u, v;ω) =
∫
D

κ(x, ω)∇u(x) · ∇v(x) dx

for ω ∈ Ω and we denote by 〈g, v〉H−1,H̊1 the duality pairing between g ∈
H−1(D) and v ∈ H̊1(D). Now, assuming that f is a random variable with
values in H−1(D), we consider a pathwise weak formulation of the boundary
value problem:

Problem 2.1 (Pathwise Weak Formulation). Find a random variable ũ with
values in H̊1(D), such that

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D) (2.3)

holds almost surely.

Remark 2.2. In Problem 2.1 we look for a random variable ũ with values in
H̊1(D), such that

P
(
b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

)
= 1. (2.3a)
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Due to the separability of H̊1(D) this problem is equivalent to the weaker
problem formulation: Find a random variable ũ with values in H̊1(D), such
that for all v ∈ H̊1(D) there holds

P
(
b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1

)
= 1. (2.4)

Since every realization of the coefficient κ is bounded by assumption
(2.2) and f is a random variable with values in H−1(D), by the theorem of
Lax-Milgram (see e.g. [7] Theorem 2.7.7) there exists a mapping ũ : Ω →
H̊1(D), ω 7→ ũ(ω) satisfying

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

for almost all ω ∈ Ω. Furthermore, the estimate

‖ũ(ω)‖H1(D) ≤ C
‖f(ω)‖H−1(D)

κmin(ω)
a.s. (2.5)

holds, where C > 0 is a suitable constant which does not depend on ω ∈ Ω.
This mapping ũ is a.s. uniquely defined and measurable as is proved in the
next Lemma.

Lemma 2.3. Assume κ : D×Ω → R is a strongly measurable random variable
in L∞(D) satisfying

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s.

for real-valued random variables κmin, κmax, and f is a random variable with
values in H−1(D). Then the mapping ũ : Ω → H̊1(D) is a random variable
in H̊1(D) which is measurable with respect to the σ-algebra σ(f, κ), generated
by f and κ, and solves Problem 2.1.

Proof. From the assumptions on κ and f it follows that there exist sequences
(κn)n∈N and (fn)n∈N of σ(f, κ)-measurable, simple random variables with
values in L∞(D) and H−1(D), respectively, satisfying

‖κ− κn‖L∞(D) → 0, a.s. and ‖f − fn‖H−1(D) → 0, a.s. for n →∞.

Then the result follows immediately from the properties of the pathwise bi-
linear form b and the convergence of the simple random variables. �

In analogy to variational formulations of boundary value problems with
purely deterministic input data we want to study also the corresponding
variational formulation for random input data which is sometimes referred
to as “stochastic variational formulation”. Such a formulation is obtained by
defining a suitable bilinear form on a Hilbert space of random variables in
H̊1(D), e.g. a(u(·), v(·)) = EPb(u(·), v(·); ·), and correspondingly by defining
a linear form. However, since the coefficient κ is not bounded by constants but
random variables we cannot directly use the Lax-Milgram theorem to prove
existence and uniqueness of the weak solution. To address this problem we
will define suitable solution and test function spaces to formulate the problem
and to ensure the existence of a unique weak solution. The key observation
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is obtained as follows: Squaring inequality (2.5) and taking the expectation
EP with respect to the probability measure P yields

EP

(
‖ũ‖2H1(D)

)
≤ C2EP

(
‖f‖2H−1(D)

κ2
min

)
. (2.6)

Hence, the pathwise solution ũ is a second-order random variable in H̊1(D)
if the second-order moment of the H−1-norm of f , weighted with the re-
ciprocal of the real-valued random variable κ2

min, is finite. Thus, we need
weighted function spaces in order to formulate the stochastic variational prob-
lem. Given a general real-valued random variable % > 0 a.s. we introduce the
spaces

Um
% : = L2(Ω,A, %dP;Hm(D)), m ∈ Z, and

Ům
% : = L2(Ω,A, %dP; H̊m(D)), m ∈ N0,

where the %-weighted L2-spaces are defined by

L2(Ω,A, %dP;V ) :=
{
ξ : Ω → V measurable : EP

(
‖ξ‖2V %

)
< ∞

}
with V = Hm(D) or H̊m(D), respectively. Endowing the spaces Um

% and Ům
%

with the inner product

(u, v)Um
%

= EP

(
(u, v)Hm(D)%

)
, u, v ∈ Um

%

and the induced norm

‖u‖Um
%

=
√

EP

(
‖u‖2Hm(D)%

)
, u ∈ Um

%

these spaces are also Hilbert spaces and there exist isomorphisms to the
corresponding tensor product spaces (see e.g. [13])

Um
%
∼= Hm(D)⊗ L2(Ω,A, %dP) and Ům

%
∼= H̊m(D)⊗ L2(Ω,A, %dP),

if L2(Ω,A, %dP) is separable. Furthermore, we note that the seminorm

|u|U1
%

=
√

EP

(
|u|2H1(D)%

)
=

√√√√ ∫
D×Ω

|∇u(x, ω)|2%(ω) dx dP(ω)

is equivalent to the norm ‖ · ‖U1
%

in Ů1
% and that the dual space of Ům

% can
be identified with the space U−m

%−1 . For convenience we denote by Um or

Ům the spaces Hm(D) ⊗ L2(Ω,A,P) or H̊m(D) ⊗ L2(Ω,A,P), respectively.
On occasion we will replace P by another probability measure Q and write
Um

Q := Hm(D)⊗ L2(Ω,A,Q) and Ům
Q := H̊m(D)⊗ L2(Ω,A,Q).

Then for a given f ∈ U−1
1

κ2
min

the stochastic weak formulation reads as follows:

Problem 2.4 (Stochastic Weak Formulation). Find û ∈ Ů1, such that

a(û, v) = 〈f, v〉 for all v ∈ Ů1
κ2

min
, (2.7)
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where the bilinear form a is given by

a(u, v) = EP

∫
D

κ(x)∇u(x) · ∇v(x) dx

 =
∫
Ω

b(u(ω), v(ω);ω) dP(ω) (2.8)

and the duality pairing between f ∈ U−1
1

κ2
min

and v ∈ Ů1
κ2

min
is given by

〈f, v〉 = EP

(
〈f, v〉H−1,H̊1

)
=
∫
Ω

〈f(ω), v(ω)〉H−1,H̊1 dP(ω).

It is important to note that the solution and test function spaces are
now different spaces. Furthermore, the domain of the bilinear form a is a
proper subset of Ů1 × Ů1

κ2
min

, i.e., the bilinear form a is not defined or finite

for all pairs (u, v) ∈ Ů1 × Ů1
κ2

min
. Thus, an implicit requirement of the weak

formulation is to find a solution û such that the related bilinear form a(û, ·)
is defined and finite for all test functions.

3. Existence and uniqueness of weak solution

In this section, we will present two alternative proofs of existence and unique-
ness of a solution to the weak formulation (2.7). Both approaches have ben-
efits and drawbacks but when combined appropriately they are a powerful
tool to study weak solutions and their properties. First we state a theorem
which is a generalization of the Lax-Milgram theorem where the bilinear form
is not defined on a cartesian product.

Theorem 3.1. Let Hilbert spaces X1, X2, Y1, Y2 with dense and continuous
embeddings X2 ⊂ X1 and Y2 ⊂ Y1 and a bilinear form a : X1×Y1 % Da → R
be given such that

(i) the restricted bilinear forms a∣∣X1×Y2
: X1 × Y2 → R

and a∣∣X2×Y1
: X2 × Y1 → R are continuous,

(ii) there holds the inf-sup condition with a constant c > 0

inf
u∈X1\{0}

sup
v∈Y1\{0}

|a(u, v)|
‖u‖X1‖v‖Y1

≥ c > 0, and

(iii) for any v ∈ Y1 \ {0} there exists u ∈ X2 such that a(u, v) > 0.

Then for any f ∈ Y ∗
1 there exists a unique u ∈ X1 satisfying

a(u, v) = 〈f, v〉 for all v ∈ Y1.

Proof. The operator Ta : X1 → Y ∗
2 , u 7→ a(u, ·), is linear and continuous.

The restricted operator T̂a : X1 % D(T̂a) → Y ∗
1 ⊂ Y ∗

2 associated with Ta is
densely defined, since X2 ⊂ D(T̂a) ⊂ X1 is densely embedded, and injective
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and closed, because of the inf-sup condition (ii). Therefore it follows with
Banach’s closed range theorem (see e.g. [17] p. 205) that

R(T̂a) = N (T̂ ∗
a )⊥

where T̂ ∗
a is the adjoint operator of T̂a. Condition (iii) yields N (T̂ ∗

a ) = {0},
thus R(T̂a) = Y ∗

1 , which completes the proof. �

Corollary 3.2. For any f ∈ U−1
1

κ2
min

there exists a unique û ∈ Ů1 satisfying the

stochastic weak formulation (2.7) and the estimate

‖û‖U1 ≤ C‖f‖U−1
1

κ2
min

.

Proof. The Hilbert spaces X1 = Ů1, X2 = Ů1
κ2

max
κ2

min

, Y1 = Ů1
κ2

min
and Y2 =

Ů1
κ2

max
and the bilinear form a defined in (2.8) satisfy all conditions in The-

orem 3.1. The continuous and dense embeddings and the continuity of the
bilinear forms a∣∣Ů1×Ů1

κ2
max

: Ů1 × Ů1
κ2

max
→ R and a∣∣Ů1

κ2
max

κ2
min

×Ů1
κ2

min

:

Ů1
κ2

max
κ2

min

× Ů1
κ2

min
→ R follow immediately from the definition of the spaces. To

verify the inf-sup condition (ii), we define for u ∈ Ů1 the random variable vR

with values in H̊1(D) by

vR :=

{
u

κmin
, κmax

κmin
≤ R,

0, otherwise,

and denote by BR the set

BR :=
{

ω ∈ Ω :
κmax(ω)
κmin(ω)

≤ R

}
.

Thus we obtain vR ∈ Ů1
κ2

min
, since

|vR|2U1
κ2

min

=
∫

BR

|u(ω)|2H1(D) dP(ω) ≤ |u|2U1 < ∞,

and by assumption (2.2) on the coefficient κ there holds

|a(u, vR)| =
∫

D×BR

κ(x, ω)
κmin(ω)

|∇u(x, ω)|2 dx dP(ω) ≥
∫

BR

|u(ω)|2H1(D) dP(ω).

Since P
(
Ω \

⋃
R>0 BR

)
= 0, there exists for every δ > 0 a R > 0 such that∫

BR

|u(ω)|2H1(D) dP(ω) ≥ (1− δ)|u|2U1
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and thus

sup
v∈Ů1

κ2
min

\{0}

|a(u, v)|
|v|U1

κ2
min

≥ |a(u, vR)|
|vR|U1

κ2
min

≥
(1− δ)|u|2U1

|u|U1
= (1− δ)|u|U1 .

Because δ > 0 can be chosen arbitrarily the inf-sup condition holds with
constant c = 1. Condition (iii) is satisfied, since for any v ∈ Ů1

κ2
min

\ {0} we
can define

uR :=

{
vκmin, κmax

κmin
≤ R,

0, otherwise,
and the set BR as above,

which satisfies uR ∈ Ů1 and a(uR, v) > 0 for R large enough. Hence, by
Theorem 3.1 the statement follows. �

Obviously, Corollary 3.2 is also true for problems with other boundary
conditions as long as the seminorm is a norm in the corresponding function
spaces.

An alternative method to prove existence and uniqueness of the solu-
tion to Problem 2.4 where the coefficient κ is a lognormal random field, is
given in the work of Gittelson [11]. For this special case it can be shown that
the unique pathwise solution ũ is also the unique solution of the stochas-
tic variational problem if it belongs to the solution space. Below we prove
an analogous result for the more general assumptions (2.2) on the random
coefficient.

Theorem 3.3. For f ∈ U−1
1

κ2
min

the unique solution ũ of Problem 2.1 belongs

to Ů1 and it solves also Problem 2.4. Furthermore, any solution û ∈ Ů1 of
Problem 2.4 is σ(f, κ)-measurable and there holds

û(x, ω) = ũ(x, ω) a.e. and a.s.

Proof. Recalling that f ∈ U−1
1

κ2
min

and utilizing the estimate (2.6) we obtain

‖ũ‖2U1 = EP‖ũ‖2H1(D) ≤ C2EP

‖f‖2H−1(D)

κ2
min

= C2‖f‖2
U−1

1
κ2

min

< ∞.

Since ũ satisfies equation (2.3), there holds for all v ∈ Ů1
κ2

min

b(ũ(ω), v(ω);ω) = 〈f(ω), v(ω)〉H−1,H̊1 a.s.

Taking the expectation yields a(ũ, v) = 〈f, v〉 for all v ∈ Ů1
κ2

min
and hence ũ

solves Problem 2.4. Now, we consider a random variable û ∈ Ů1 satisfying

a(û, v) = 〈f, v〉 for all v ∈ Ů1
κ2

min
.
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Then we define for w ∈ H̊1(D) and A ∈ A the functions vw,A(x, ω) :=
w(x) 1A(ω)

κmin(ω) . It follows vw,A ∈ Ů1
κ2

min
and we get

EP
1A

κmin
b(û, w; ·) = a(û, vw,A) = 〈f, vw,A〉 = EP

1A

κmin
〈f, w〉H−1,H̊1 .

Since A ∈ A can be chosen arbitrarily this implies for any w ∈ H̊1(D)

b(û(ω), w;ω) = 〈f(ω), w〉H−1,H̊1 a.s.

Hence, the random variable û with values in H̊1(D) solves problem (2.4) and
since its solution is almost surely unique and σ(f, κ)-measurable (cf. Lemma
2.3), there holds

û(x, ω) = ũ(x, ω) a.e. and a.s.,
i.e., the random variable û is measurable with respect to the σ-algebra σ(f, κ).

�

4. Stochastic Galerkin discretization

Let ξ := (ξi)i∈Iξ
with index set Iξ ⊆ N be a sequence of real-valued so

called “basic” random variables, such that there are measurable functions
κξ, fξ : D × R|Iξ| → R satisfying

κ(x, ω) = κξ(x, ξ(ω)) and f(x, ω) = fξ(x, ξ(ω)) a.e. and a.s.

Thereby the index set Iξ can be finite, i.e., Iξ = {1, . . . ,M}, M ∈ N, or the
set of the natural numbers, i.e., Iξ = N. Sequences of basic random variables
can be obtained with the help of Karhunen-Loève expansions (see e.g. [12])
or other series expansions (see e.g. [10]) of the input data.

Then according to Theorem 3.3 the solution û of variational formulation
(2.7) belongs to L2(Ω, σ(ξ),P; H̊1(D)) since κ and f are σ(ξ)-measurable.
In the following we assume that the random variable ξ = (ξi)i∈Iξ

on the
probability space (Ω,A,P) has the distribution FP

ξ and that any ξi, i ∈ Iξ,
possesses finite moments of arbitrary order, i.e., EP|ξi|n < ∞, n ∈ N, and a
continuous distribution function FP

ξi
.

In order to apply the Stochastic Galerkin Method we define the space

UN,K,p := Up ⊗ UN,K ⊂ Ů1

which serves as solution space for the Stochastic Galerkin approximation. The
space Up is a finite-dimensional subspace of H̊1(D) obtained by a uniform
p version of the Finite Element Method and UN,K is a finite-dimensional
subspace of L2(Ω, σ(ξ1, . . . , ξK),P) ⊆ L2(Ω, σ(ξ),P) with {1, . . . ,K} ⊆ Iξ.
Since we want to use generalized polynomial chaos (see e.g. [15, 16]), i.e.
polynomials in the underlying basic random variables ξ, we construct the
finite dimensional space UN,K as follows,

UN,K := span

ξα :=
∏
i∈Iξ

ξαi
i , α ∈ ΛN,K

 .
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We choose the index set

ΛN,K ⊂ Λ := {α ∈ N|Iξ|
0 : α has only finitely many non-zero entries}

such that the total degree of the multivariate polynomials is bounded,

ΛN,K = {α ∈ Λ : αi = 0 ∀ i > K, |α| ≤ N }, |α| :=
∑
i∈Iξ

αi.

As discretized test function space we choose

VN,K,p :=
{

u

κmin
: u ∈ UN,K,p

}
.

Then for a given f ∈ U−1
1

κ2
min

the discrete version of the weak formulation (2.7)

reads as follows:

Problem 4.1 (Discrete Weak Formulation). Find ûN,K,p ∈ UN,K,p, such that

a(ûN,K,p, v) = 〈f, v〉 for all v ∈ VN,K,p. (4.1)

The existence of a unique Stochastic Galerkin solution ûN,K,p ∈ UN,K,p

to problem (4.1) can be proved under the assumptions in the following lemma.

Lemma 4.2. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 then for any f ∈ U−1
1

κ2
min

there exists a unique ûN,K,p ∈ UN,K,p such that

a(ûN,K,p, v) = 〈f, v〉 for all v ∈ VN,K,p.

Proof. The result follows from Theorem 3.1 with the Hilbert spaces

X1 = UN,K,p ⊂ Ů1, X2 = UN,K,p ⊂ Ů1
κ2

max
κ2

min

,

Y1 = VN,K,p ⊂ Ů1
κ2

min
and Y2 = VN,K,p ⊂ Ů1

κ2
max

due to κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and a discrete version of the inf-sup
condition for the bilinear form a. �

Now, we want to investigate the approximation error of this Stochastic
Galerkin solution ûN,K,p. Employing the discrete inf-sup condition we get a
quasi-optimal result for the Galerkin solution, i.e., the error can be bounded
by a best approximation error in another – a stronger – norm.

Lemma 4.3. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and û ∈ Ů1
κ2

max
κ2

min

then the

following estimate holds

|û− ûN,K,p|U1 ≤ C̃ inf
z∈UN,K,p

|û− z|U1
κ2

max
κ2

min

with a constant C̃ > 0 (independent of N,K and p) for the solutions û and
ûN,K,p of the weak formulation (2.7) and the discrete weak formulation (4.1),
respectively.
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Proof. Utilizing a(û − z, v) = a(ûN,K,p − z, v) for all v ∈ VN,K,p and the
discrete inf-sup condition we obtain

|û− ûN,K,p|U1 ≤ |û− z|U1 + |ûN,K,p − z|U1

≤ |û− z|U1 + |û− z|U1
κ2

max
κ2

min

≤ 2|û− z|U1
κ2

max
κ2

min

for all z ∈ UN,K,p. �

Consequently we measure the error in the stronger U1
κ2

max
κ2

min

-norm and we

assume the following.

Assumption 4.4. Let q := EP
κ2

max

κ2
min

< ∞ and assume κ2
max

κ2
min

is σ(ξ)-measurable,

i.e., there exists a measurable transformation tκ2
max

κ2
min

: R|Iξ| → R+ with κ2
max

κ2
min

=

tκ2
max

κ2
min

(ξ).

Then the measure Q with dQ = 1
q κ2

maxκ−2
mindP is a probability measure.

In the following we consider the function spaces Um
Q and Ům

Q instead of Um
κ2

max
κ2

min

and Ům
κ2

max
κ2

min

, m ∈ Z, which coincide with Um
κ2

max
κ2

min

and Ům
κ2

max
κ2

min

but are much

easier to handle due to the corresponding probability space (Ω,A,Q) at hand.

Corollary 4.5. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and Assumption 4.4 is

fulfilled there holds for û ∈ Ů1
Q with a suitable constant C > 0 (independent

of N,K and p)

|û− ûN,K,p|U1 ≤ C inf
z∈UN,K,p

|û− z|U1
Q

(4.2)

for the solutions û and ûN,K,p of the corresponding weak formulation (2.7)
and discrete weak formulation (4.1).

Proof. This result follows immediately from Lemma 4.3 and Assumption 4.4.
�

By choosing a suitable z ∈ UN,K,p and applying the triangle inequal-
ity to the right-hand side of (4.2) we can identify different sources of the
approximation error. To see this, we introduce some notations: We denote by

ΠŮ1
Q,N,K,p

: Ů1
Q → UN,K,p

the orthogonal projection onto UN,K,p, and by

ΠŮ1
Q,N,K

: Ů1
Q → H̊1(D)⊗ UN,K

the orthogonal projection onto H̊1(D)⊗ UN,K ,
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both with respect to the U1
Q-norm. Assuming û ∈ Ů1

Q the approximation
error of the Stochastic Galerkin approximation to the exact solution can be
estimated using (4.2) with z = ΠŮ1

Q,N,K,p
û as

|û− ûN,K,p|U1 ≤ C
[
|û−ΠŮ1

Q,N,K
û|U1

Q
+ |ΠŮ1

Q,N,K
û−ΠŮ1

Q,N,K,p
û|U1

Q

]
. (4.3)

Hence this error has two components, namely an approximation error due to
discretizing in the stochastic dimension and an approximation error due to
discretizing in the spatial dimension.

The spatial approximation error can be bounded using standard argu-
ments from the theory of Finite Element Methods (FEMs). Here, we have
employed a p version of the FEM (see e.g. [2]). Under the assumptions of
Corollary 2.2 in [2] there holds the following.

Corollary 4.6. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and Assumption 4.4 is

satisfied then for û ∈ Uk
κ2

max
κ3

min

∩ Ů1
Q with constant C̃ > 0 (independent of N ,

K, p and û) there holds

|ΠŮ1
Q,N,K

û−ΠŮ1
Q,N,K,p

û|U1
Q
≤ C̃p−(k−1)‖û‖Uk

κ2
max

κ3
min

.

Proof. From Corollary 2.2 in [2] it follows√
κmin(ω)

∣∣∣ΠŮ1
Q,N,K

û(ω)−ΠŮ1
Q,N,K,p

û(ω)
∣∣∣
H1(D)

≤ C̃p−(k−1)‖û(ω)‖Hk(D)

with a constant C̃ independent of N , K, p, ω ∈ Ω and û. Squaring and taking
the expectation EQ with respect to Q leads to

EQ

∣∣∣ΠŮ1
Q,N,K

û−ΠŮ1
Q,N,K,p

û
∣∣∣2
H1(D)

≤ C̃2p−2(k−1)EQ

‖û‖2Hk(D)

κmin
.

�

We note that analogous results to Corollary 4.6 can be obtained for h
or h-p versions of the FEM by using Theorem 2.1 in [2].

The first term on the right-hand side of inequality (4.3) can be esti-
mated with the help of generalized polynomial chaos expansions. In view of
Assumption 4.4 the random variable ξ = (ξi)i∈Iξ

as a random variable on the
probability space (Ω,A,Q) has the distribution FQ

ξ (dy) = 1
q tκ2

max
κ2

min

(y)FP
ξ (dy).

Assuming EQ|ξi|n < ∞ for all i ∈ Iξ and n ∈ N the multivariate orthonormal
polynomials {qα(ξ), α ∈ Λ} in L2(Ω,A,Q) exist. Hence, in order to expand
any random variable u ∈ L2(Ω, σ(ξ),Q; H̊1(D)) in this generalized polyno-
mial chaos the polynomials {qα(ξ), α ∈ Λ} have to be dense in L2(Ω, σ(ξ),Q).
Some necessary conditions to establish this property are discussed in [8]. If
the polynomials lie dense and û ∈ L2(Ω, σ(ξ),Q; H̊1(D)) then the solution
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possesses a generalized polynomial chaos expansion {qα(ξ), α ∈ Λ}, i.e.,

û(x, ω) =
∑
α∈Λ

ûα(x)qα(ξ(ω)), where ûα(x) = EQû(x)qα(ξ).

Furthermore, the projection ΠŮ1
Q,N,K

û is given by the truncated expansion

ΠŮ1
Q,N,K

û(x, ω) =
∑

α∈ΛN,K

ûα(x)qα(ξ(ω)).

Corollary 4.7. If the polynomials {qα(ξ), α ∈ Λ} are dense in L2(Ω, σ(ξ),Q)
and û ∈ Ů1

Q then the approximation error

|û−ΠŮ1
Q,N,K

û|U1
Q
→ 0 (K, N →∞).

Proof. The multivariate polynomials {qα(ξ), α ∈ Λ} form an orthonormal
basis of L2(Ω, σ(ξ),Q) because they are dense in L2(Ω, σ(ξ),P). Since the
weak solution û is σ(ξ)-measurable (according to Theorem 3.3) and⋃

N≥0, K≥1

ΛN,K = Λ

there holds that ΠŮ1
Q,N,K

û → û in Ů1
Q for K →∞, N →∞. �

Hence in view of Corollary 4.6 and Corollary 4.7 the approximation
error |û− ûN,K,p|U1 converges to zero if the solution û ∈ U2

κ2
max

κ3
min

∩ Ů1
Q and

the orthonormal polynomials {qα(ξ), α ∈ Λ} are complete in L2(Ω, σ(ξ),Q).

5. Numerical example

Now, we turn to a specific application, namely the approximation of the solu-
tion of an one-dimensional differential equation with random data. Consider
the boundary value problem

−(κ(x, ω)u′(x, ω))′ = f(x), x ∈ (0, 1), ω ∈ Ω

u(0, ω) = 0, ω ∈ Ω

κ(1, ω)u′(1, ω) = F, ω ∈ Ω

where forcing f ∈ H−1(D) is a deterministic function, F a given constant
and κ a strongly measurable random variable in L∞(D) satisfying

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s.

for some real-valued random variables κmin and κmax. Then the exact solu-
tion is given by

u(x, ω) =

x∫
0

1
κ(y, ω)

F +

1∫
y

f(z) dz

 dy.
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If the coefficient κ is modeled as an exponential function of the absolute value
of one standard Gaussian distributed random variable, that is,

κ(x, ω) := exp(|ζ(ω)|x) with ζ ∼ N (0, 1)

then κ is bounded by

0 < 1 ≤ κ(x, ω) ≤ exp(|ζ(ω)|) < ∞ a.e. and a.s.

The random variable κ2
max/κ2

min=exp(2|ζ|) is in Lr(Ω,A,P) for all r≥1. As
basic random variable we choose the standard Gaussian distributed random
variable ζ, i.e., ξ = ζ, and employ the Stochastic Galerkin Method using
orthonormal polynomials, i.e. polynomial chaos, in ξ. Figure 1 shows the rel-
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Figure 1. Relative errors of mean (left) and second moment
(right) of the Stochastic Galerkin approximation to the so-
lution with f ≡ 1 and F = 1 using polynomials of different
orders in ξ.

ative errors of the mean and second-order moment of the Stochastic Galerkin
approximation to the exact solution as a function of the spatial variable x.
Thereby we have chosen the forcing f ≡ 1 and the boundary value F = 1 and
we use a p version of the Finite Element Method, precisely, a single Gauss-
Lobatto-Legendre spectral finite element of degree p = 20 for the spatial
discretization. In the stochastic dimension we use orthonormal polynomials
in ξ up to degree 5, 10, 15 and 20. Obviously, the error decays, which agrees
with the theory developed in Section 4. On the other hand it is also possible
to choose as basic random variable η = |ζ|, a chi-distributed random variable
with one degree of freedom. Thus, we can use orthonormal polynomials, i.e.
generalized polynomial chaos, in η within the Stochastic Galerkin Method,
in particular orthonormal polynomials in η up to degree 2 and 5. In the spa-
tial dimension we again use a single Gauss-Lobatto-Legendre spectral finite
element of degree p = 20 . In Figure 2 we observe that the associated relative
errors of the mean and second-order moment tend to zero much faster than
for the standard Gaussian basic random variable ξ. Notably, we obtain much
better approximation results by using polynomials up to order 2 and 5 in
η = |ζ| as compared to polynomials up to order 20 in ξ = ζ. Hence, the
approximation error, more precisely the rate of convergence, and thus the
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Figure 2. Relative errors of mean (left) and second moment
(right) of the Stochastic Galerkin approximation to the so-
lution with f ≡ 1 and F = 1 using polynomials of different
orders in η.

approximation quality depends on the set of basic random variables. This
relation is currently being investigated in ongoing research.
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[1] Babuška, I., Nobile, F., Tempone, R., A Stochastic Collocation Method for El-
liptic Partial Differential Equations with Random Input Data, SIAM J. Numer.
Anal., 45(2007), no. 3, 1005–1034.
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