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Abstract. In this paper, an algorithm based on He’s variational iteration
method (shortly, VIM) is developed to approximate the solution of a
non-linear mathematical model of HIV dynamics. Using a system of
ordinary differential equations, the model describes the viral dynamics
of HIV-1. Some plots of the solution are depicted and used to investigate
the influence of certain key parameters on the spread of the disease. The
results shows that the VIM has the advantages of being more concise
for numerical purposes. Furthermore, this work opens a new direction
of research whereby He’s VIM applications might offer more insight into
the modeling of dynamical systems in life sciences.
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1. Introduction

Mathematical modeling of many biological or physical systems leads to non-
linear ordinary differential equations. An effective method is required to ana-
lyze the mathematical model which provides solutions conforming to physical
reality. Therefore, we must be able to solve nonlinear ordinary differential
equations. Common analytic procedures linearize the system or assume that
nonlinearities are relatively insignificant. Such procedures change the actual
problem to make it tractable by the conventional methods. In short, the
physical problem is transformed to a purely mathematical one, for which the
solution is readily available. This changes, sometimes seriously, the solution,
which means that the problem being solved is no longer a proper represen-
tation of the physical problem whose solution is desired. However, in spite
of the extensive development in the mathematical and statistical techniques
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applied to modeling infectious diseases, little has been done to apply approxi-
mate methods to solve epidemic models. We try to obtain some analytical re-
sults to the deterministic model posed in this paper. In particular, we discuss
mathematical and statistical ideas representing HIV internal virus dynamics.
Simulation results from initial attempts in the areas of applied mathematics
and statistics will be presented.

The human immuno-deficiency virus (HIV) infection which can lead
to acquired immuno-deficiency syndrome (AIDS), has become an important
infectious disease in both developed and developing nations. Mathemati-
cal models have been used extensively in research into the epidemiology of
HIV/AIDS, to help improve our understanding of the major contributing
factors in a given epidemic.

The key markers of the disease progression due to HIV and ADIS are
the CD4+ T−cell and viral levels in the plasma. Modeling the interaction
between HIV-1 virus and CD4 cells has been a major area of research for
many years [17, 3, 18]. In recent years, a few studies of HIV dynamics have
been conducted to describe the effects of various epidemiological factors [1,
5, 15, 2, 19, 16]. In particular, in [1], the authors present an overview of some
concepts and methodologies that are useful on modeling HIV pathogenesis.
A dynamical system modeling the HIV infection was used in [5] to show the
impact of the viral diversity on the immune response and disease dynamics.
In [15], the authors considered a non-linear mathematical model for HIV
epidemic that spreads in a variable size population through both horizontal
and vertical transmission. Using stability theory and computer simulation,
they showed that by controlling the rate of vertical transmission, the spread
of the disease can be reduced significantly. In [4], the author introduce a novel
class of HIV models that incorporates mutation, the mutation is modeled by
an integral operator whose kernel describes the transition probability between
different strains. Numerical aspects of computer simulations are discussed.

Instead of finding a small parameter for solving nonlinear problems
through perturbation method, a new analytical method called He’s varia-
tional iteration method will be used in this paper to solve the epidemic model
problem. The VIM is useful to obtain exact and approximate solutions for lin-
ear and nonlinear differential equations. It has been used to solve effectively,
easily and accurately a large class of nonlinear problems with approximations.

The organization of the paper is as follows: In section 2, we describe
a 3−dimensional model for internal HIV dynamics. In section 3, we review
the procedure of VIM. To show the efficiency of the method, in section 4,
we apply the method on the model system appeared in section 2. Simulation
results are presented in section 5.

2. HIV Model System

Mathematical models have come to play an important part in biological sys-
tems. Mathematics makes it possible to make predictions about the behavior
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Symbol Description
x(t) concentration of uninfected cells.
y(t) concentration of infected cells.
z(t) concentration of virus particles.

(1− γ) reverse transcriptase inhibitor drug effects.
(1− η) protease inhibitor drug effect.

λ total rate of production of healthy cells per unit time.
κ per capita death rate of healthy cells.
β transmission coefficient between uninfected cells and the

infective virus particles.
N average number of infective virus particles produced by

an infected cell in the absence of HAART during
its entire infectious lifetime.

u per capita death rate of infective virus particles.
a death rate of infected cells.

Table 1. Variables and parameters in system (2.1)

of the system. Following [14], we introduce a 3−dimensional model to describe
the viral dynamics in the presence of HIV-1 infection and Highly Active An-
tiretrovital Treatment (HAART). The equations of the model represents the
variation rate of uninfected cells, infected cells, and virus particles. The model
is thus described by the following

dx(t)
dt = λ− κx(t)− (1− γ)βx(t)z(t)

dy(t)
dt = (1− γ)βx(t)z(t)− ay(t)

dz(t)
dt = (1− η)Nay(t)− uz(t)− (1− γ)βx(t)z(t)

(2.1)

with suitable initial conditions. The variables x(t), y(t) and z(t) are functions
of time t ∈ [0,∞). We summarize in Table 1 the biological meaning of the
variables and parameters occurring in this model. This model captures math-
ematically the viral dynamics of HIV-1 virus interacting with CD4 cells. It
can be seen that a model of such a simple nature is able to adequately reflect
the disease progression from the initial infection to an asymptomatic stage
where the set-point is reached.

We assume that the cells and the virus are uniformly distributed on the
organism. Note that when a single infective virus particle infects a single un-
infected cell the virus particle is absorbed into the infected cell and effectively
dies. Hence, the term (1− γ)βx(t)z(t) appears in all the three equations. In
system (2.1), the first equation represents the dynamics of the concentration
of healthy cells x(t); λ represents the rate (assumed to be constant) at which
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new x(t) cells are generated. In the case of active HIV infection, the concentra-
tion of healthy cells decreases proportionally to the product (1−γ)βx(t)z(t),
where β represents a coefficient that depends on various factors, including the
velocity of penetration of virus into cells, and the frequency of encounters be-
tween uninfected cells and free virus. The second equation in system (2.1)
describes the dynamics of the concentration of infected cells y(t); (1 − γ)β
is the rate of infections; a is the death rate of infected cells. Therefore, the
average lifetime of an infected cell is 1/a. The third equation describes the
concentration of free virion z(t), which are produced by the infected cells at
a rate (1 − η)Na, and u is the death rate of the virion. The parameters of
the model and their values are defined in Tables 1 and 2. Regarding equilib-
rium points and stability for system (2.1), a qualitative investigation [14] of
the system described by equations (2.1) reveals that the model system has a
unique disease-free equilibrium given by (λ/κ, 0, 0).

A value for R0, the basic reproduction number, is also useful to study
further behavior of the system. This number tells us how many secondary
infective virus particle will result from the introduction of one infected cell
which was infected by the original infective virus particle. Hence

R0 =
(1− γ)βλN(1− η)

κu + βλ(1− γ)
.

R0 can also be interpreted as the expected number of secondary infected
particles caused by a single infected virus particle entering the disease-free
population at equilibrium (λ/κ, 0, 0). R0 = 1, means that each infected cell
will infect one uninfected cell. Usually, R0 < 1 implies that an epidemic will
not result from the introduction of one infected cell, whereas R0 > 1 implies
that an epidemic will occur, and R0 = 1 requires further investigation. How-
ever, as will be seen, the model (2.1) may imply something further, namely
that the threshold value of R0 must be brought far below one in order to
avoid an epidemic, and if this does not happen, an endemic equilibrium may
be established. R0 is also useful for establishing the existence of equilibrium
points, and in performing stability analysis for the system. To discuss the
local behavior of the system around the equilibrium point, we introduce the
following theorem

Theorem 2.1. The solution of the model system (2.1) is asymptotically stable
at the equilibrium point (λ/κ, 0, 0) provided that R0 < 1.

Proof. The Jacobian of the system (2.1) is

J(x, y, z) =

 −κ− (1− γ)βz(t) 0 −(1− γ)βx(t)
(1− γ)βz(t) −a (1− γ)βx(t)
−(1− γ)βz(t) (1− η)Na −u− (1− γ)βx(t)


Substituting the equilibrium point (λ/κ, 0, 0), the Jacobian matrix becomes

J(λ/κ, 0, 0) =

 −κ 0 −(1− γ)βλ/κ
0 −a (1− γ)βλ/κ
0 (1− η)Na −u− (1− γ)βλ/κ
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The eigenvalues of this matrix are λ1 = −κ,

λ2 =
−aκ− βλ + βγλ− κu +

√
M − 4aκ(−β(−1 + γ)λ(1 + (−1 + η)N) + κu)

2κ

and,

λ3 = −
aκ + βλ− βγλ + κu +

√
M − 4aκ(−β(−1 + γ)λ(1 + (−1 + η)N) + κu)

2κ

where M = (aκ + β(λ− γλ) + κu)2. λ1 is clearly real and negative. Also, as

R0 =
(1− γ)βλN(1− η)

κu + βλ(1− γ)
< 1,

then (1− γ)βλN(1− η) is less than κu+λ(1− γ)βλ, and so λ2, λ3 meets the
necessary criteria. The system (2.1) shows local asymptotic stability at the
equilibrium point (λ/κ, 0, 0).

To examine the sensitivity of R0 to the parameters, say N and u, the
normalized forward sensitivity index [6] with respect to the parameters N,u
are calculated as

µN =
∂R0
R0

∂N
N

=
N

R0

∂R0

∂N
=

N

R0

(1− γ)βλ(1− η)
κu

= 1.

Thus, R0 and N are directly proportional. Also,

|µu| = |
∂R0
R0

∂u
u

| = | u

R0

∂R0

∂u
| = | −κu

κu + βλ(1− γ)
| < 1.

Therefore, R0 is most sensitive to changes in N . So, in section 5, we choose
to focus on changing the parameters N and u.

3. Basic Idea of VIM

In 1978, Inokuti et al [8] proposed a general Lagrange multiplier method to
solve nonlinear problems. Ji-Huan He has modified the method of Inokuti,
and propose the variational iteration method (VIM) [9, 12]. This method has
been employed to solve a large variety of linear and nonlinear problems with
approximations converging rapidly to accurate solutions. Some advantages of
this technique are

1. The initial condition can be chosen freely with some unknown parame-
ters.

2. The unknown parameters in the initial condition can be easily identified.
3. The calculation is simple and straightforward.

This approach is successfully and effectively applied to various equations, see
for example [9, 12, 13], and the reference therein.

The idea of this method is constructing a correction functional by a
general Lagrange multiplier. The multiplier in the functional should be cho-
sen such that its correction solution is superior to its initial approximation,
called trial function, and is the best within the flexibility of trial function,
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accordingly we can identify the multiplier by the variational theory [9, 12].
A complete review of the VIM is available in [10].

The initial approximation can be freely chosen with possible unknowns,
which can be determined by imposing the boundary/initial conditions. To
illustrate the procedure of this approach, we consider the following general
differential equation

Lu(t) + Nu(t) = f(t). (3.1)

where L is a linear operator, N is a nonlinear operator, and f(t) is an inho-
mogeneous term. According to the variational iteration method [9, 12], the
terms of a sequence {un} are constructed such that this sequence converges
to the exact solution, un’s are calculated by a correction functional as follows:

un+1(t) = un(t) +
∫ t

0

λ(τ) {Lun(τ) + N(ũ)(τ)− f(τ)} dτ (3.2)

where λ is general Lagrangian multipliers, which can be identified optimally
via the variational theory [9], the subscript n denotes the nth order approx-
imation. The second term, involving the integral, on the right-hand side of
equation (3.2) is called the correction. Under suitable restricted variational
assumption (i.e.,ũn is considered as a restricted variation), we can assume
that the above correctional functional are stationary (i.e., δũn = 0). The
successive approximations un+1(t), n ≥ 0 of the solution u(t) will be readily
obtained upon using Lagrange multipliers, and by using the selective function
u0. The initial condition u(0) is usually used for selecting the zeroth approx-
imation u0. With λ determined, then several approximations un(t), n ≥ 0,
follow immediately, the exact solution may be obtained by using

u(t) = lim
n→∞

un(t).

For linear problems, its exact solution can be obtained by only one iteration
step, this is due to the fact that the Lagrange multipliers can be exactly iden-
tified, see [9]. He’s technique provides a sequence of functions which converges
to the exact solution of the problem [12].

In fact, the solution of the differential equation (3.1) is considered as
the fixed point of the functional (3.2) under suitable choice of the initial
approximation. For the convergence proof of (3.2), we state the following
known result that is useful to support the convergence of our iteration.

Theorem 3.1. [7] For a Banach space X, suppose the nonlinear mapping
A : X → X satisfy

‖ A[u]−A[ū] ‖≤ γ ‖ u− ū ‖, u, ū ∈ X

for some constant γ < 1. Then A has a unique fixed point. Furthermore, the
sequence un+1 = A[un] with arbitrary choice of u0 ∈ X, converges to the fixed
point of A, and

‖ uk − uj ‖≤‖ u1 − u0 ‖
k−2∑

`=j−1

γ`.
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According to this Theorem, for the nonlinear mapping

A[u] = u(t) +
∫ t

0

[
Lu(τ) + N(u(τ))− f(τ)

]
dτ.

A sufficient condition for the convergence of the VIM is strictly contraction
of A. Furthermore, the sequence (3.2) converges to the fixed point of A,
which is also the solution of the differential equation in Equation (3.1). In
what follows, we will apply the VIM to solve the epidemic model (2.1), to
illustrate the strength of the method and to establish approximations of high
accuracy for these models.

4. Applications

To show the efficiency of the method described in the previous section, in this
section, we apply the VIM to solve the system of nonlinear ordinary differen-
tial equations (2.1). According to the VIM, we can construct the correction
functionals as follows:

xn+1(t) = xn(t) +
∫ t

0

λ1(τ)
{

x′n(τ)− λ + κxn(τ) + (1− γ)βxn(τ)z̃n(τ)
}

dτ

yn+1(t) = yn(t) +
∫ t

0

λ2(τ)
{

y′n(τ)− (1− γ)βx̃n(τ)z̃n(τ) + ay(τ)
}

dτ

zn+1(t) = zn(t)

+
∫ t

0

λ3(τ)
{

z′n(τ)−(1−η)Naỹn(τ)+uzn(τ)+(1−γ)βx̃n(τ)z̃n(τ)
}

dτ (4.1)

where λ1, λ2 and λ3 are the general Lagrange multipliers, and x̃n, ỹn and z̃n

denote restricted variations, i.e., δx̃n = δỹn = δz̃n = 0. Making the above
correction functional stationary

δxn+1(t) = δxn(t)+δ

∫ t

0

λ1(τ)
{

x′n(τ)−λ + κxn(τ) + (1− γ)βxn(τ)z̃n(τ)
}

dτ

= δxn(t) + δ

∫ t

0

λ1(τ)
{

x′n(τ) + κxn(τ)
}

dτ

= δxn(t) + λ1(τ)δxn(τ)
∣∣∣
τ=t

+
∫ t

0

(κλ1 − λ′1)(τ)δxn(τ)dτ = 0,
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also,

δyn+1(t) = δyn(t) + δ

∫ t

0

λ2(τ)
{

y′n(τ)− (1− γ)βx̃n(τ)z̃n(τ) + ay(τ)
}

dτ

= δyn(t) + δ

∫ t

0

λ2(τ)
{

y′n(τ) + ayn(τ)
}

dτ

= δyn(t) + λ2(τ)δyn(τ)
∣∣∣
τ=t

+
∫ t

0

(aλ2 − λ′2)(τ)δyn(τ)dτ = 0,

and,
δzn+1(t) = δzn(t)

+δ

∫ t

0

λ3(τ)
{

z′n(τ)− (1− η)Naỹn(τ) + uzn(τ) + (1− γ)βx̃n(τ)z̃n(τ)
}

dτ

= δzn(t) + δ

∫ t

0

λ3(τ)
{

z′n(τ) + uzn(τ)
}

dτ

= δzn(t) + λ3(τ)δzn(τ)
∣∣∣
τ=t

+
∫ t

0

(uλ3 − λ′3)(τ)δzn(τ)dτ = 0,

yield the following stationary conditions

λ′1(τ)− κλ1(τ) = 0, 1 + λ1(τ)
∣∣∣
τ=t

= 0

λ′2(τ)− aλ2(τ) = 0, 1 + λ2(τ)
∣∣∣
τ=t

= 0

λ′3(τ)− uλ3(τ) = 0, 1 + λ3(τ)
∣∣∣
τ=t

= 0

(4.2)

The general Lagrange multipliers can be identified by solving the system of
equations in (4.2), to obtain λ1(τ) = −eκ(τ−t), λ2(τ) = −ea(τ−t), λ3(τ) =
−eu(τ−t). Substituting these values back into the correction functional Equa-
tion (4.1) results into the following iteration formula:

xn+1(t) = xn(t)−
∫ t

0

eκ(τ−t)
{

x′n(τ)− λ + κxn(τ) + (1− γ)βxn(τ)zn(τ)
}

dτ

yn+1(t) = yn(t)−
∫ t

0

ea(τ−t)
{

y′n(τ)− (1− γ)βxn(τ)zn(τ) + ay(τ)
}

dτ

zn+1(t) = zn(t)

−
∫ t

0

eu(τ−t)
{

z′n(τ)−(1−η)Nayn(τ)+uzn(τ)+(1−γ)βxn(τ)zn(τ)
}

dτ. (4.3)

We start with initial approximations x0(t) = N1, y0(t) = N2, z0(t) = N3.
We can use xn+1(t) obtained in the first equation of (4.3) into the second
equation of (4.3), and so on for other variables, this increases the convergence
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rate. By the above iteration formula (4.3), we can obtain a few first terms
being calculated.

x1(t) = 9.999995× 107 − 9.989995× 106 e−0.1t

y1(t) = 1. + 9999e−0.5t

z1(t) = 49999.9− 39999.9e−5t

(4.4)

While,

x2(t) = 1× 107 + 399.6e−5.1t − 408.162e−5t − 9.99× 106e−0.1t

− 24994.9e−3.60822×10−16t − e−0.1t(−25003.5− 2497.5t)

y2(t) = 4999.99−434.347e−5.1t+444.443e−5t+11233.7e−0.5t − 6243.73e−0.1t

z2(t) = −494.9 + 19979.9e−5.1t − 39999.9e−5t + 55550e−0.5t + 509.693e−0.1t

− e−5t(25544.7− 1999.9t)

Continuing in this manner, the rest of components of the iteration formulas
can be obtained using symbolic packages such as Mathematica. In our case,
only three terms from the iteration formula are used to obtain the approxi-
mation for our solutions.

5. Simulation Results and Discussion

To illustrate the use of the VIM, we describe some numerical experiments
made to get a better understanding of the solutions behavior for the model
system (2.1). The parameter values used here have all been taken from a pub-
lished paper [14] and the reference therein, which are quoted here as in Table
2. The computer simulations were performed using the first three iterations
(x3(t), y3(t), z3(t)) for each variable, with the parameters values appeared in
Table 2. Simulation results for the model, are displayed in Figures 1− 6. As
can be clearly seen, Figure 1 shows the uninfected cells, it is found that un-
infected cells first increases with time, and then after almost 40 days reaches
it equilibrium position, which is λ/κ = 1 × 107. As seen from Figure 2 that
infected cells decreases exponentially as all infectives will develop AIDS and
will die out. Figure 3, show the virus particles, we observe that immediately
after infection, the amount of virus particles rises dramatically. After a few
days (usually six to eight days), the virus concentration falls to the virus par-
ticles. Our further graphs 4 − 6 dealing mainly with the existence of steady
state for some values of R0 < 1.

It should be pointed out that the parameters in the model are inde-
pendent of each other, since each of them plays an independent role. These
parameters have definite meaning, so the results of simulation can hardly
coincide with the actual situation of the epidemic if the parameters cannot
be adjusted to proper values.
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Parameter Values in Simulation
λ 106 day−1 dm3

κ 0.1 day−1

u 5 day−1

a 0.5 day−1

η 0.5
β 1× 10−8 day−1 dm3

N 100 per cell
γ 0.5

N1 = N2 = N3 10000
Table 2. Parameters in system (2.1) with their values

0 20 40 60 80 100 120 140
days

5.0´106

1.0´107

1.5´107

2.0´107
Uninfected cells

Figure 1. Simulated behavior of uninfected cells with parame-

ter values given in Table 2, R0 = 0.49, the steady state (λ/κ, 0, 0)

is asymptotically stable.
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