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Metric relations on mountain slopes

Ildikó-Ilona Mezei

Abstract. It is well-known that the Ceva and Menelaus theorems are de-
ducible from each other in the Euclidean case. In this paper we show that
Ceva’s theorem holds whereas Menelaus’ theorem fails on Matsumoto’s
mountain slope geometry.
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1. Introduction

It is well-known that in Euclidean geometry, Ceva’s and Menelaus’ theorems
are dual results, i.e., they are deducible from each other. In the Euclidean
context, several extensions of these theorems can be found, see Green [2],
Landy [4], Lipman [5], Wernicke [8]. Moreover, Masal’tsev [6] generalized
Ceva’s theorem to geodesic triangles on Riemannian surfaces of constant
curvature (hyperbolic plane, sphere).

A natural question arises in the validity of these two theorems on non-
Riemannian surfaces, even with constant curvature. Our aim is to prove that
on the Matsumoto’s mountain slope - which is one of the simplest non-
Riemannian Finsler surface whose flag curvature is identically 0 - Ceva’s
theorem holds whereas Menelaus’ theorem fails except the case when the
slope becomes the horizontal plane.

2. Results

First, we recall the Matsumoto’s mountain slope metric, see Matsumoto [7] or
Kozma-Tamássy [3]. Let us consider an inclined plane (slope) with an angle
α ∈ [0, π/2) to the horizontal plane, denoted by (Sα). If a man moves with a
constant speed v [m/s] on a horizontal plane, he goes lt = vt+ g

2 t2 sinα cos θ
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meters in t seconds on (Sα), where θ is the angle between the straight road
and the direct downhill road (θ is measured in clockwise direction). The point
here is that the travel speed depends heavily on both the slope of the terrain
and the direction of travel, due to the presence of the gravity. The precise law
of the above phenomenon - by using the so-called Okubo’s technique - can
be described relatively to the horizontal plane by the parameterized function

Fα(y1, y2) =
y2
1 + y2

2

v
√

y2
1 + y2

2 + g
2y1 sinα

, (y1, y2) ∈ R2 \ {(0, 0)}.

Here, g ≈ 9.81 [m/s2] and we assume g sinα ≤ v.
For every α ∈ (0, π/2), (R2, Fα) is a typical non-Riemannian, Finsler

surface. A classification of Finsler manifolds shows that (R2, Fα) is a locally
Minkowski space with the following additional properties:
(a) its flag curvature is identically 0, see Bao-Chern-Shen [1, p. 384];
(b) its geodesics are straight lines, see also Bao-Chern-Shen [1, p. 384];
(c) every two points in (R2, Fα) determine a unique geodesic which lies

them, due to Cartan-Hadamard’s and Hopf-Rinow’s theorems.
On account of (a)-(c), there is a strong similarity between (R2, Fα) and
the standard two-dimensional Euclidean space. However, differences appear
once we start to measure distances on these spaces. Exploiting the shape of
geodesics on (R2, Fα), the distance (measuring actually the physical time to
arrive) from P = (P 1, P 2) to Q = (Q1, Q2) on (R2, Fα) is

dα(P,Q) = Fα(Q1 − P 1, Q2 − P 2).

Note that usually dα(P,Q) 6= dα(Q,P ).
Since geodesics are straight lines on (R2, Fα), see (b) from above, we

may introduce the following two notions:
• [PQ] = {t(Q − P ) + P : t ∈ [0, 1]} is the geodesic segment lying the

points P,Q ∈ R2, and
• [PQ[= {t(Q − P ) + P : t ≥ 1} is the geodesic semi-line defined by

P,Q ∈ R2.
Let A,B, C be three arbitrarily fixed points in (R2, Fα), and let M,N,P
points on the geodesic segments [BC], [CA], [AB], respectively. We consider
the following two statements:

(Cα
1 ): dα(A,P )

dα(P,B) ·
dα(B,M)
dα(M,C) ·

dα(C,N)
dα(N,A) = 1;

(C2): The geodesic segments [AM ], [BN ], [CP ] are concurrent.

Theorem 2.1. For every α ∈ [0, π/2), we have (Cα
1 ) ⇔ (C2).

Thus, Ceva’s theorem holds on the mountain slope (R2, Fα) for every
α ∈ [0, π/2).

Now, let A,B,C be fixed points in (R2, Fα), and fix the points N,P on
the geodesic segments [CA], [AB], while M on the geodesic semi-line [BC[.
We formulate the following two statements (the first being formally the same
as (Cα

1 )):
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(Mα
1 ): dα(A,P )

dα(P,B) ·
dα(B,M)
dα(M,C) ·

dα(C,N)
dα(N,A) = 1;

(M2): The points M,N,P are on the same geodesic (straight line).

Theorem 2.2. The equivalence (Mα
1 ) ⇔ (M2) holds if and only if α = 0.

Consequently, Menelaus’ theorem holds on mountain slopes for every geodesic
triangle if and only if the ’slope’ becomes the horizontal plane (i.e., α = 0),
which corresponds exactly to the Euclidean case.

3. Proofs

In the sequel, we denote by dE the usual two-dimensional Euclidean metric.
Proof of Theorem 2.1. Since P = dE(P,B)

dE(A,B)A + dE(A,P )
dE(A,B)B, we have

P −A =
dE(A,P )
dE(A,B)

(B −A).

Since Fα is positively homogeneous of degree 1, one has

dα(A,P ) = Fα(P 1 −A1, P 2 −A2) =
dE(A,P )
dE(A,B)

Fα(B1 −A1, B2 −A2).

A similar calculation for dα(P,B) implies that

dα(A,P )
dα(P,B)

=
dE(A,P )
dE(P,B)

.

Repeating this argument for the other two sides of the triangle, (Cα
1 ) is

equivalent to
dE(A,P )
dE(P,B)

· dE(B,M)
dE(M,C)

· dE(C,N)
dE(N,A)

= 1.

But, in the Euclidean case, the latter relation is equivalent to the fact that
the segments [AM ], [BN ], [CP ] are concurrent, thus the proof is done.
Proof of Theorem 2.2. If α = 0, the equivalence (Mα

1 ) ⇔ (M2) is just the
well-known Menelaus’ theorem in the Euclidean case.

Now, we assume the equivalence (Mα
1 ) ⇔ (M2) holds for every points

A,B, C as well as M,N,P in (R2, Fα) specified above. We prove that α = 0.
To see this, we consider the following specific constellation of points: B =
(0, 0), C = (1, 0), M = (2, 0), A is arbitrary, while P and N are situated on
[AB] and [AC] such that M belongs to the unique geodesic lying them, see
(c) from above. Thus, (M2) holds. Since (M2) ⇔ (Mα

1 ), we have

dα(A,P )
dα(P,B)

· dα(B,M)
dα(M,C)

· dα(C,N)
dα(N,A)

= 1. (3.1)

On the other hand, (M2) also implies for the Euclidean metric that

dE(A,P )
dE(P,B)

· dE(B,M)
dE(M,C)

· dE(C,N)
dE(N,A)

= 1. (3.2)
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As in the proof of Theorem 2.1, by using the positive homogeneity of Fα, we
deduce

dα(A,P )
dα(P,B)

=
dE(A,P )
dE(P,B)

and
dα(C,N)
dα(N,A)

=
dE(C,N)
dE(N,A)

.

Combining (3.1) and (3.2) with the above relations, we obtain
dα(B,M)
dα(M,C)

=
dE(B,M)
dE(M,C)

.

After substitutions, we obtain
Fα(2, 0)

Fα(−1, 0)
= 2. An elementary calculation

shows that the latter equation holds only in the case when g sinα = 0, i.e.,
α = 0. This concludes our proof.
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Ildikó-Ilona Mezei
Faculty of Mathematics and Computer Science
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