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Generalized projectors and the saturated
closure of a π-homomorph of finite
π-solvable groups

Rodica Covaci

Abstract. The paper introduces and studies the notion of generalized
projector, which generalizes the well-known notion of projector defined
by W. Gaschütz in [8] as a generalization of the covering subgroups
introduced by the same author in [7]. Let π be an arbitrary set of primes.
A new definition for the saturated closure of a π-homomorph of finite π-
solvable groups, equivalent to that in [3], is given. A property connected
with the notion of generalized projector on a class X of finite π-solvable
groups, called the GP-property, is also introduced. The main results
of the paper are the following: 1) a characterization theorem for the
saturated closure of the π-homomorphs of finite π-solvable groups with
the GP-property by means of the generalized projectors; 2) a theorem
showing that if X is a π-homomorph of finite π-solvable groups with
the GP-property and X is its saturated closure, then X is a Schunck
class if and only if X = X. These results prove that theorems similar
to those obtained by J. Weidner in [10] for finite solvable groups can be
also obtained in the more general case of finite π-solvable groups.
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1. Preliminaries

In [3], we generalized in the more general case of finite π-solvable groups the
results established by J. Weidner in [10] for finite solvable groups, obtaining a
characterization of the saturated closure of a homomorph of finite π-solvable
groups by means of the semicovering subgroups (introduced by J. Weidner in
[10] as a generalization of the covering subgroups defined by W. Gaschütz in
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[7]). Following the ideas from [10] and [3], the present paper introduces and
studies the notion of generalized projector, which generalizes the well-known
notion of projector defined by W. Gaschütz in [8] as a generalization of the
covering subgroups. Using the projectors, a new definition for the saturated
closure of a π-homomorph of finite π-solvable groups, equivalent to that in [3],
is given. We define for a class X of finite π-solvable groups the GP-property,
which is connected with the generalized projectors. A characterization theo-
rem for the saturated closure of the π-homomorphs of finite π-solvable groups
with the GP-property and an important consequence of this characterization
are the main results of the paper.

All groups considered in the paper are finite. Denote by π an arbitrary
set of primes and by π′ the complement to π in the set of all primes.

We remind some definitions and theorems which will be useful for our
considerations.

Definition 1.1. a) ([9]) A class X of groups is a homomorph if X is closed
under homomorphisms, i.e. if G ∈ X and N is a normal subgroup of G, then
G/N ∈ X.

b) A group G is said to be primitive if there exists a stabilizer W of G,
i.e. W is a maximal subgroup of G and coreGW = 1, where

coreGW = ∩{W g | g ∈ G}.
c) ([9]) A homomorph X is a Schunck class if X is primitively closed,

i.e. if any group G, all of whose primitive factor groups are in X, is itself in
X.

Definition 1.2. Let X be a class of groups, G a group and H a subgroup of G.
a) ([8]) H is an X-maximal subgroup of G if:

(i) H ∈ X;
(ii) H ≤ H∗ ≤ G, H∗ ∈ X ⇒ H = H∗.

b) ([8]) H is an X-projector of G if for any normal subgroup N of G,
HN/N is X-maximal in G/N .

c) ([7]) H is an X-covering subgroup of G if:
(i) H ∈ X;
(ii) H ≤ K ≤ G, K0 E K, K/K0 ∈ X ⇒ K = HK0.

Remark 1.3. a) Let X be a class of groups and G a group. Then: i) G ∈ X
if and only if G is X-maximal in G ; ii) if G is an X-projector of G, then
G ∈ X.

b) Let X be a homomorph and G a group. Then G is an X-projector of
G if and only if G ∈ X.

Theorem 1.4. ([8]) Let X be a class of groups, G a group and H a subgroup
of G.

a) If H is an X-projector of G and N is a normal subgroup of G, then
HN/N is an X-projector of G/N .

b) H is an X-projector of G if and only if:
(i) H is X-maximal in G;
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(ii) HM/M is an X-projector of G/M for all minimal normal sub-
groups M of G.

Theorem 1.5. Let X be a class of groups, G a group and H a subgroup of G.
a) If H is an X-covering subgroup or an X-projector of G, then H is

X-maximal in G.
b) ([4]) If X is a homomorph, then H is an X-covering subgroup of G

if and only if H is an X-projector in any subgroup K with H ≤ K ≤ G. In
particular, any X-covering subgroup of G is an X-projector of G.

Theorem 1.6. ([1]) A solvable minimal normal subgroup of a finite group is
abelian.

Introduced by S.A. Čunihin in [6], the π-solvable groups are more gen-
eral than the solvable groups.

Definition 1.7. a) ([6]) A group G is π-solvable if every chief factor M/N
of G (i.e. M/N is a minimal normal subgroup of G/N) is either a solvable
π-group or a π′-group. In particular, if π is the set of all primes, we obtain
the notion of solvable group.

b) ([2]) A class X of groups is said to be π-closed if

G/Oπ′(G) ∈ X ⇒ G ∈ X,

where Oπ′(G) denotes the largest normal π′-subgroup of G.
c) We say that X is a π-homomorph (respectively a π-Schunck class) if

X is a π-closed homomorph (respectively X is a π-closed Schunck class).

Theorem 1.8. ([6]) a) If G is a π-solvable group and N is a normal subgroup
of G, then G/N is π-solvable.

b) If G is a group and N is a normal subgroup of G, such that N and
G/N are π-solvable, then G is π-solvable.

Theorem 1.9. ([5]) Let X be a π-homomorph. The following conditions are
equivalent:

(i) X is a Schunck class;
(ii) if G is a π-solvable group, G /∈ X and M is a minimal normal

subgroup of G such that G/M ∈ X, then M has a complement in G;
(iii) any π-solvable group G has X-covering subgroups;
(iv) any π-solvable group G has X-projectors.

2. Generalized projectors

In [10], J. Weidner generalizes the notion of covering subgroup given in Def-
inition 1.2.c) by renouncing to the condition (i). In [3], this generalized cov-
ering subgroup is called semicovering subgroup. Similarly, we will introduce
o notion which generalizes the notion of projector.

Definition 2.1. Let X be a class of groups, G a group and H a subgroup of
G. H is called a generalized X-projector of G if for any normal subgroup N
of G, N 6= 1, HN/N is X-maximal in G/N .
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It is the aim of this section to prove some properties of the generalized
projectors.

Everywhere in this section we denote by X a class of groups, by G an
arbitrary finite group and by H a subgroup of G.

Remark 2.2. If H is an X-projector of G, then H is a generalized X-projector
of G.

Theorem 2.3. H is an X-projector of G if and only if the following two
conditions hold:

(i) H is X-maximal in G;
(ii) H is a generalized X-projector of G.

Proof. Let H be an X-projector of G. By Definition 1.2.b), for any normal
subgroup N of G we have that HN/N is X-maximal in G/N . In particular,
for N = 1 we obtain that H is X-maximal in G, and so condition (i) holds. If
we take N 6= 1 a normal subgroup of G, then HN/N is X-maximal in G/N ,
and, by Definition 2.1, H is a generalized X-projector of G, which mean that
condition (ii) also holds.

Conversely, suppose that conditions (i) and (ii) hold. From (i) follows
that for N = 1 we have HN/N is X-maximal in G/N . Let now N 6= 1 be
a normal subgroup of G. By (ii) and Definition 2.1, HN/N is X-maximal
in G/N . So HN/N is X-maximal in G/N for any normal subgroup N of G.
This means by Definition 1.2.b) that H is an X-projector of G. �

Theorem 2.4. If H is a generalized X-projector of G and N is a normal
subgroup of G, then HN/N is a generalized X-projector of G/N .

Proof. Let H be a generalized X-projector of G and N a normal subgroup
of G. We distinguish two cases:

1◦ N = 1. Since H is a generalized X-projector of G, we have for N = 1
that HN/N is a generalized X-projector of G/N .

2◦ N 6= 1. In order to prove that HN/N is a generalized X-projector of
G/N , by Definition 2.1 we have to prove that for any normal subgroup L/N
of G/N , L/N 6= 1, (HN/N · L/N)/(L/N) is X-maximal in (G/N)/(L/N).
But

(HN/N · L/N)/(L/N) = (HNL/N)/(L/N) = (HL/N)/(L/N) ' HL/L

and
(G/N)/(L/N) ' G/L,

and so we have to prove that

HL/L is X-maximal in G/L.

Indeed, from the hypothesis that H is a generalized X-projector of G, by
using Definition 2.1 for the normal subgroup L of G, where L 6= 1 (since
1 6= N < L), we obtain that HL/L is X-maximal in G/L. �

Our last theorem concerning some properties of the generalized projec-
tors is a characterization theorem for the generalized projectors.
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Theorem 2.5. H is a generalized X-projector of G if and only if HM/M is
an X-projector of G/M for any minimal normal subgroup M of G.

Proof. Let H be a generalized X-projector of G and let M be a minimal
normal subgroup of G. In order to prove that HM/M is an X-projector
of G/M , we use Theorem 2.3 and verify conditions (i) and (ii) from this
theorem.

(i) HM/M is X-maximal in G/M . Indeed, H being a generalized X-
projector of G and M being normal in G with M 6= 1, Definition 2.1 leads
to the conclusion that HM/M is X-maximal in G/M .

(ii) HM/M is a generalized X-projector of G/M . Indeed, from the facts
that H is a generalized X-projector of G and M is a normal subgroup of G,
Theorem 2.4 leads to the conclusion that HM/M is a generalized X-projector
of G/M .

Conversely, suppose that HM/M is an X-projector of G/M for any
minimal normal subgroup M of G. In order to prove that H is a generalized
X-projector of G, we use Definition 2.1. Let N be a normal subgroup of G
such that N 6= 1. Then there exists a minimal normal subgroup M of G such
that M ⊆ N . By our hypothesis, HM/M is an X-projector of G/M . From
this and from N/M E G/M , we obtain by applying Theorem 1.4.a) that
(HM/M ·N/M)/(N/M) is an X-projector of (G/M)/(N/M). But

(HM/M ·N/M)/(N/M)=(HMN/M)/(N/M)=(HN/M)/(N/M)'HN/N

and
(G/M)/(N/M) ' G/N ,

and so HN/N is an X-projector of G/N , which leads by Theorem 1.5.a) to
the conclusion that HN/N is X-maximal in G/N . This means, by Definition
2.1, that H is a generalized X-projector of G. �

Finally in this section, two remarks.
From Theorem 1.5.b) and Remark 2.2, we obtain:

Remark 2.6. If X is a homomorph, G is a group and H is a subgroup of G,
then the following implications hold:

H is an X-covering subgroup of G ⇒ H is an X-projector of G =⇒

H is a generalized X-projector of G.

This shows that if X is a homomorph, then the notion of generalized projector
generalizes both the projectors and the covering subgroups.

From the Remarks 1.3.b) and 2.2, follows immediately:

Remark 2.7. If X is a homomorph and G is a group, then:
(i) G ∈ X ⇐⇒ G is an X-projector of G;
(ii) G ∈ X ⇒ G is a generalized X-projector of G.
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3. The saturated closure of a π-homomorph

Let π be an arbitrary set of primes. From now on, all groups used in our
considerations will be finite π-solvable groups.

Definition 3.1. Let X be a π-homomorph. We call the saturated closure of
X the smallest π-homomorph X of finite π-solvable groups such that the
following two conditions hold:

(i) X ⊆ X ;
(ii) any finite π-solvable group has X-projectors.

Remark 3.2. a) Theorem 1.9 shows that Definition 3.1 is equivalent with that
given in [3].

b) If X is a π-homomorph and X is its saturated closure, then X is
a π-homomorph and any finite π-solvable group has X-projectors. It follows
by Theorem 1.9 that the saturated closure X is a Schunck class. Since X is
π-closed, we conclude that X is a π-Schunck class.

Notation 3.3. Let X be a class of finite π-solvable groups. We denote by
X∗ the class of all finite π-solvable groups G such that G is a generalized
X-projector of G.

Let us give some properties of the class X∗, which will be used to prove
the main results of the paper. Everywhere X will denote a class of finite
π-solvable groups.

Theorem 3.4. If X is a homomorph, then X ⊆ X∗.

Proof. Let G ∈ X. By Remark 2.7.(ii), G is a generalized X-projector of G.
It follows that G ∈ X∗. �

Theorem 3.5. If X is a class of finite π-solvable groups, then X∗ is a homo-
morph.

Proof. Let G ∈ X∗ and let N be a normal subgroup of G. We show that
G/N ∈ X∗. Indeed, from G ∈ X∗ we have that G is a finite π-solvable group
and G is a generalized X-projector of G. G being a finite π-solvable group
and N being normal in G, it follows by Theorem 1.8.a) that G/N is also a
finite π-solvable group. Furthermore, from the facts that G is a generalized
X-projector of G and N is a normal subgroup of G, Theorem 2.4 leads to
the conclusion that G/N is a generalized X-projector of G/N . It follows that
G/N ∈ X∗. �

The property of a class X of finite π-solvable groups we define below
is connected with the generalized projectors introduced in Definition 2.1 and
will be called therefore the GP-property.

Definition 3.6. A class X of finite π-solvable groups is said to have the GP-
property if X satisfies the following two conditions:

(i) every finite π-solvable group has generalized X-projectors;
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(ii) if G is a finite π-solvable group, then for any generalized X-
projector H of G there exists a minimal normal subgroup M of G such that
M ⊆ H.

Theorem 3.7. Let X be a class of finite π-solvable groups with the GP-property
and G a finite π-solvable group. The following two conditions are equivalent:

(i) G ∈ X∗;
(ii) if H is a generalized X-projector of G, then H = G.

Proof. Let X be a class with the GP-property and G a finite π-solvable group.
(i) ⇒ (ii) : Let G ∈ X∗ and H be a generalized X-projector of G. From

G ∈ X∗ follows that G is a generalized X-projector of G, which implies by
Theorem 2.5 that G/M is an X-projector of G/M for any minimal normal
subgroup M of G. By Theorem 1.5.a), we deduce that G/M is X-maximal
in G/M , hence G/M ∈ X. On the other side, by applying Theorem 2.5
for the generalized X-projector H of G, we obtain that HM/M is an
X-projector of G/M for any minimal normal subgroup M of G, hence
HM/M is X-maximal in G/M . From this, since G/M ∈ X, we deduce that
HM/M = G/M . It follows that HM = G for any minimal normal subgroup
M of G. But X is a class with the GP-property and so for the generalized
X-projector H of G, there exists a minimal normal subgroup M0 of G such
that M0 ⊆ H. Then H = HM0. But, as we saw above, HM0 = G. It follows
that H = G.

(ii) ⇒ (i) : Let H be an arbitrary generalized X-projector of G. Then,
by (ii), H = G. Hence G is its own generalized X-projector and so G ∈
X∗. �

Theorem 3.8. If X is a π-homomorph with the GP-property, then X∗ is a
π-homomorph.

Proof. Let X be a π-homomorph with the GP-property. By Theorem 3.5,
X∗ is a homomorph. It remains to prove that X∗ is π-closed, i.e. that
G/Oπ′(G) ∈ X∗ implies G ∈ X∗. Let G/Oπ′(G) ∈ X∗. We first notice
that from G/Oπ′(G) ∈ X∗ follows that G/Oπ′(G) is a finite π-solvable
group. Now, G/Oπ′(G) and Oπ′(G) being π-solvable groups, we deduce
by Theorem 1.8.b) that G is also a π-solvable group. In order to prove that
G ∈ X∗, we use Theorem 3.7. Let H be a generalized X-projector of G. Since
Oπ′(G) E G, Theorem 2.4 leads to the conclusion that HOπ′(G)/Oπ′(G) is a
generalized X-projector of G/Oπ′(G). But the class X has the GP-property
and G/Oπ′(G) ∈ X∗. By Theorem 3.7, it follows that

HOπ′(G)/Oπ′(G) = G/Oπ′(G).

Hence
HOπ′(G) = G. (3.1)

We consider two cases:
1◦ Oπ′(G) = 1. In this case, (3.1) gives that H = G. But H being a

generalized X-projector of G, it follows that G is a generalized X-projector
of G. Hence G ∈ X∗.
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2◦ Oπ′(G) 6= 1. Then H being a generalized X-projector of G and
Oπ′(G) E G, Oπ′(G) 6= 1, Definition 2.1 leads to the conclusion that
HOπ′(G)/Oπ′(G) is X-maximal in G/Oπ′(G), which means by applying
(3.1) that G/Oπ′(G) is X-maximal in G/Oπ′(G). Hence G/Oπ′(G) ∈ X.
But the class X being π-closed, it follows that G ∈ X. By Theorem 3.4, the
homomorph X has the property that X ⊆ X∗. So G ∈ X∗. �

Theorem 3.9. If X is a π-homomorph with the GP-property, then any finite
π-solvable group has X∗-projectors.

Proof. Let X be a π-homomorph with the GP-property. Then, by Theorem
3.8, X∗ is a π-homomorph. We apply Theorem 1.9 for the π-homomorph X∗

and conclude that instead of proving that any finite π-solvable group has X∗-
projectors we can prove the equivalent condition (ii) from Theorem 1.9, which
becomes in our case: if G is a π-solvable group, G /∈ X∗ and M is a minimal
normal subgroup of G such that G/M ∈ X∗, then M has a complement in
G. Let G be a π-solvable group, G /∈ X∗ and M a minimal normal subgroup
of G such that G/M ∈ X∗. We first observe that there exists a subgroup
H of G such that H is a generalized X-projector of G and H 6= G. Indeed,
if we suppose the contrary, then every generalized X-projector H of G is
equal to G, which means by Theorem 3.7 that G ∈ X∗, a contradiction with
the hypothesis G /∈ X∗. We complete the proof of the present theorem by
showing that H is a complement of M in G, i.e. HM = G and H ∩M = 1.
Indeed, since H is a generalized X-projector of G and M is normal in G, we
conclude by Theorem 2.4 that HM/M is a generalized X-projector of G/M .
This and G/M ∈ X∗ imply by Theorem 3.7 that HM/M = G/M . Hence
HM = G. It remains to prove that H ∩ M = 1. Since M is a minimal
normal subgroup of the π-solvable group G, M is either a solvable π-group
or a π′-group. Suppose that M is a π′-group. Then M ≤ Oπ′(G) and so

G/Oπ′(G) ' (G/M)/(Oπ′(G)/M). (3.2)

Since G/M ∈ X∗ and X∗ is a homomorph, (3.2) leads to G/Oπ′(G) ∈ X∗,
which implies by the π-closure of X∗ that G ∈ X∗, a contradiction with
the hypothesis G /∈ X∗. It follows that M is a solvable π-group. Then, by
Theorem 1.6, M is abelian. Let us prove that H ∩M is normal in G. We
know that H ≤ G and M E G imply H ∩M E H. Let now g ∈ G = HM
and x ∈ H ∩M . Then g = hm, with h ∈ H and m ∈ M , and we have

g−1xg = (hm)−1x (hm) = (m−1h−1) x (hm) = m−1(h−1x h) m. (3.3)

From H ∩ M E H, we conclude that h−1x h ∈ H ∩ M . Furthermore, M
being abelian, we can commute in (3.3) the elements h−1x h and m, both
in M , and obtain

g−1xg = m−1(h−1x h) m = m−1m (h−1x h) = h−1xh ∈ H ∩M .

We proved that H∩M is normal in G. From this and from H∩M ⊆ M , by
using that M is a minimal normal subgroup of G, it follows that H ∩M = 1
or H ∩M = M . But H ∩M = M leads to M ⊆ H, hence G = HM = H,
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a contradiction with H 6= G. It follows that H ∩M = 1, and the theorem is
proved. �

Theorem 3.10. If X is a π-homomorph with the GP-property, then X∗ is a
π-Schunck class.

Proof. Since X is a π-homomorph with the GP-property, Theorem 3.8 shows
that X∗ is a π-homomorph and Theorem 3.9 shows that any finite π-solvable
group has X∗-projectors. By applying Theorem 1.9, we conclude that X∗ is
a π-Schunck class. �

Theorem 3.11. Let X be a π-homomorph with the GP-property. If Y is a
π-homomorph satisfying the conditions

(i) X ⊆ Y ;
(ii) any finite π-solvable group has Y -projectors, then X∗ ⊆ Y .

Proof. Let G ∈ X∗. Then G is a finite π-solvable group and so, by (ii),
there exists an Y -projector H of G. We will prove that H is a generalized
X-projector of G. For this, we use Theorem 2.5. and prove that HM/M is
an X-projector of G/M for any minimal normal subgroup M of G. Let M
be a minimal normal subgroup of G. From G ∈ X∗ follows that G is its own
generalized X-projector, and by Theorem 2.5 we have that G/M is an X-
projector of G/M , hence by Theorem 1.5.a) G/M is X-maximal in G/M , and
so G/M ∈ X. But (i) claims that X ⊆ Y . It follows that G/M ∈ Y . Now, H
being an Y -projector of G and M being normal in G, Definition 1.2.b) leads
to the conclusion that HM/M is Y -maximal in G/M . This and G/M ∈ Y
imply HM/M = G/M , hence HM = G. But we saw that G/M is an X-
projector of G/M , which together with HM = G gives that HM/M is an
X-projector of G/M , what we had to prove. It follows that H is a generalized
X-projector of G. But G ∈ X∗ and the class X has the GP-property. So we
can apply Theorem 3.7 and obtain that H = G. From the choice of H as an
Y -projector of G, we deduce by Theorem 1.5.a) that H is Y -maximal in G,
which implies that H ∈ Y . This and H = G lead to G ∈ Y . The inclusion
X∗ ⊆ Y is proved. �

Theorem 3.12. If X is a π-homomorph with the GP-property and X is its
saturated closure, then

X∗ ⊆ X .

Proof. Let X be a π-homomorph with the GP-property and X its saturated
closure. We can take in Theorem 3.11: Y = X. Indeed, by Definition 3.1, the
saturated closure X satisfies conditions (i) and (ii) claimed in Theorem 3.11.
By applying Theorem 3.11, we conclude that X∗ ⊆ X . �

From Theorems 3.4 and 3.12 immediately follows:

Corollary 3.13. If X is a π-homomorph with the GP-property and X is its
saturated closure, then

X ⊆ X∗ ⊆ X .
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4. The main results

The main results of this paper, which we prove below, are the following: 1) a
characterization theorem for the saturated closure of the π-homomorphs of
finite π-solvable groups with the GP-property by means of the generalized
projectors; 2) a characterization theorem for Schunck classes of finite π-
solvable groups by means of the saturated closure of π-homomorphs of finite
π-solvable groups with the GP-property.

Theorem 4.1. If X is a π-homomorph with the GP-property and X is its
saturated closure, then

X = X∗.

Proof. Let X be a π-homomorph with the GP-property and X its saturated
closure. By applying Theorem 3.12, we obtain that X∗ ⊆ X . In order to
prove that X ⊆ X∗, we use the Definition 3.1 of the saturated closure of
X. If we show that X∗ verifies conditions (i) and (ii) given in Definition
3.1, then, X being the smallest π-homomorph which verifies (i) and (ii), we
conclude that X ⊆ X∗. It is easy to see that X∗ verifies condition (i),
namely X ⊆ X∗, because X is a homomorph and we apply Theorem 3.4.
Furthermore, X∗ verifies condition (ii), namely any finite π-solvable group
has X∗-projectors, as Theorem 3.9 shows. �

Theorem 4.2. Let X be a π-homomorph with the GP-property and X its
saturated closure. The following two conditions are equivalent:

(i) X is a Schunck class;
(ii) X = X .

Proof. Let X be a π-homomorph with the GP-property and X its saturated
closure.

(i) ⇒ (ii) : Let X be a Schunck class. We first prove that X = X∗.
Indeed, X being a homomorph, Theorem 3.4 leads to X ⊆ X∗. Furthermore,
by applying Theorem 1.9 for the π-homomorph X which is a Schunck class,
we conclude that any finite π-solvable group has X-projectors. Let us take in
Theorem 3.11 Y = X, which is a π-homomorph satisfying the two conditions
claimed in this theorem, namely: X ⊆ X and any finite π-solvable group has
X-projectors. By applying Theorem 3.11, we obtain that X∗ ⊆ X. From
X ⊆ X∗ and X∗ ⊆ X follows that

X = X∗. (4.1)

On the other side, we are in the hypotheses of Theorem 4.1 and so we conclude
that

X = X∗. (4.2)
From (4.1) and (4.2) follows that X = X .

(ii) ⇒ (i) : Let X = X . By the Definition 3.1 of the saturated closure
X, any π-solvable group G has X-projectors. But X = X. Then any π-
solvable group G has X-projectors. We can now apply Theorem 1.9 for the
π-homomorph X, and it follows that X is a Schunck class. �
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