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FIXED POINT AND INTERPOLATION POINT SET
OF A POSITIVE LINEAR OPERATOR ON C(D)

IOAN A. RUS

Abstract. Let D C R? be a compact convex subset with nonempty inte-
rior. If A : C(D) — C(D) is a positive linear operator with IIo(D) C F4 or
I1; (D) C Fa then we establish some relations between the mixed-extremal
point set of D and the interpolation point set of A. Our results include
some well known results (see I. Rasa, Positive linear operators preserv-
ing linear functions, Ann. T. Popoviciu Seminar of Funct. Eq. Approx.
Conv., 7(2009), 105-109) and the proofs are directly and elementarely.

1. Introduction

In the iteration theory of a positive linear operator on a linear space of func-
tions, the interpolation set of the operator has a fundamental part (U. Abel and M.
Ivan [1], O. Agratini [2], [3], O. Agratini and I.A. Rus [5], [6], S. Andras and I.A. Rus
[8], I. Gavrea and M. Ivan [12], H. Gonska and P. Pitul [14], I. Rasa [17], I.A. Rus
[19], [20]).

A well known result is the following ([12],[14],[17], ...)
Theorem 1.1. Let L: C[0,1] — C[0,1] be a positive linear operator such that

L(ei) =e;, 1= 071

where e;(x) = x*, x € [0,1].

Then:

L(£)(0) = f(0) and L(f)(1) = f(1), Vf € C[0,1].

There exist different proofs of this result. One proof uses some estimations

(Mamedov [16], Raga [17], Gonska and Pitul [14], ...). Another proof uses a theorem

by H. Bauer (H. Bauer [9], N. Boboc and Gh. Bucur [10], F. Altomare and M. Campiti
[7], I. Rasa [17], ...). In [17], I. Raga gives a directly and elementary proof.
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Let D C R? be a bounded open convex subset and A : C(D) — C(D) be a
positive linear operator. The aim of this paper is to establish some relations between
the mixed-extremal point set of D, the fixed point set and the interpolation point set
of A. In this paper we shall use the notations in [7] and [20].

2. Mixed-extremal point set: Examples

Let D C RP be a convex closed subset of RP with nonempty interior.
Definition 2.1. A point 2° = (29,...,29) € 9D is mixed-extremal point of D iff for
each i € {1,...,p}, 2 is an extremal (i.e., maximal or minimal) point of the ordered

set
({zi | (z1,...,2p) € D}, <g ).

We shall denote by (M E)p the mixed-extremal point set of D.

For a better understanding of this notion we shall give some examples.
Example 2.2. If D, :=[0,1] C R, then (M E)p, = {0,1}.
Example 2.3. If Dy := Ry, then (ME)p, = {0}.
Example 2.4. If D3 is the simplex P, P,P3 in R? with P; = (0,0), P, = (1,0) and
P3 = (O, 1)7 then (ME)DJ = {Pl,PQ,Pg}.

Example 2.5. If D, is the simplex P, P, P; in R? with P; = (0,0), P, = (2,0) and
P3 = (1, 1)7 then (ME)D4 = {Pl,PQ}.

Example 2.6. If Dj is the polytope Py P, P3Py with P, = (0,0), P> = (1,0), P3 =
(2,1) and Py = (1,1), then (ME)p, = {P1, P3}.
Example 2.7. If Ds := { € R? | 2] +... 4z} <1}, then (ME)p, = 0.

3. Interpolation points and fixed points of positive linear operators
Let D C R? be a bounded open convex subset of RP. Let A : C(D) — C(D)
be a positive linear (i.e., increasing linear) operator.

Definition 3.1. A point z € D is an interpolation point of A iff A(f)(z) = f(z), for
all f € C(D). A subset E C D is an interpolation set of A iff A(f)‘E = f‘E The
subset

(IP)p :={z € D | A(f)(z) = f(z), Vf € C(D)}
is by definition the interpolation point set of A.
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Remark 3.2. Let us denote by 2, the pointwise convergence. Let Y C C(D) be a
dense subset of (C(D),2). If for a point 2 € D we have

A(f)(@) = f(z), VfeY
then z is an interpolation point of A.

Remark 3.3. If 4 : (C(D),2) — (C(D),2) is weakly Picard operator and x € D
is an interpolation point of A, then z is an interpolation point of A®°.

The main results of this paper are the following
Theorem 3.4. We suppose that:

(i) A is an increasing linear operator;

(i) (D) C Fa.
Then (ME)p is an interpolation set of A.
Proof. Let us denote by II(D) C C(D) the set of polynomial functions on D.

unif

Since II(D) is a dense subset of (C(D), —), it is sufficient to prove that

f)|(JV[E)D = f‘(ME)D7 Vf e T(D).

Let 2° € (M E)p. From the mean-value theorem we have

£@) ~ £ = Yo~ a2 BT A= 20)) gy

Since D is compact and 2° is a mixed-extremal element of D, there exist oy, 5; € R,
i€ {l,...,p} such that

Zaz( 29) < f(z) Z , Vz € D.

From this we have
p

> ailgi—a%) < f - fl gzp: i — x91). (3.1)
i=1 i=1
Here
¢:D—R, x—xz, i€{l,...,p}
and
1:D—R, z+— 1.
Since A is an increasing linear operator and 1, q1, ... , gp € Fa, from (3.1) we have

Za(q —x01)<A(f Z
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0

For x := z", we have

A(f)(@) = f(=°), Vf € TI(D)
and, from Remark 3.2, for all f € C(D).

More general we have
Theorem 3.5. We suppose that

(i) A is an increasing linear operator;

(ii) (D) C Fy.
Then
E:={z e (ME)p | Alg:)(x) =2}
18 an interpolation set of A.

Proof. Let 2° € E. From (3.1) we have

P

Z%‘(A(Qi) —a{1) <A(f) - f(a")1 < Z@'(A(Qi) — 271)

i=1 i=1

For z := 20, it follows

A(f)(=°) = f(°), Vf € C(D),

In a similar way we have
Theorem 3.6. We suppose that:
(i) A is an increasing linear operator;
(i) g1,...,qp € Fa.
Then
E:={ze(ME)p | A(1)(z) =1}
18 an interpolation set of A.

Example 3.7. Let Q = [0,1] x [0,1] and
A(f)(wr, 22) = f(0,0) + f(1,0)x1 + f(0, D)2,
In this case A is an increasing linear operator with
1¢ Fyand q1,q0 € Fa

and
We remark that

A(1)(0,0) =1, A(1)(0,1) =2, A(1)(1,0) =2 and A(1)(1,1) = 3.
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In the case p =1 and D = [a, b], let us denote e;(x) := z", x € [a,b], i € N.
We have
Theorem 3.8. We suppose that:

(i) A: Cla,b] — Cla,b] is an increasing linear operator;
(i1) ep and eg € Fy.

Then:

(1) If A(er)(a) = a, then a is an interpolation point of A.
(2) If A(e1)(b) = b, then b is an interpolation point of A.

Example 3.9. Let us consider the following operator of J.P. King (see [14])

A:Clo,1] — C[o,1],
A(f)(x) == (1 = 2?)f(0) + 22 f(1), = € [0,1].

In this case:

(1) eg, ey € Fu;
(2) (IP)a={0,1}
(3) A(e1)(0) =0, A(e1)(1) = 1.

4. Open problems

From the above considerations the following problems arise:

Problem 4.1. To extend the above results to the case when D is an open convex

subset of RP, not necessarily bounded.

Problem 4.2. Let D C R? be an open convex subset of RP. Let A : C(D) — C(D)
be an increasing linear operator. We suppose that £ C D is a strong Volterra set of
A ([20], [6]), L.,

f,9€CD), fl,=9|,= Alf) = Alg).

We consider the operator
Azors : C(e0E) — C(e0E), Azon(flp) = A5

It is clear that Agg is an increasing linear operator.

If IIp(D) C F4 or I1;(D) C Fa, in which conditions we have that (IP)a_, #0 7

Problem 4.3. Could our results be derived from the H. Bauer principle of the
barycenter of a probability Radon measure (Theorem 2.1 in Raga [17])?
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