STUDIA UNIV. "BABEŞ–BOLYAI", MATHEMATICA, Volume ${\bf LV},$ Number 4, December 2010

ON S-DISCONNECTED SPACES

ZBIGNIEW DUSZYŃSKI

Abstract. The structure of the class of *S*-disconnected spaces is studied. Two types of *S*-disconnectedness of topological spaces are introduced. Properties of these spaces in the context of connectedness of spaces are investigated.

1. Introduction

A certain class of non-Hausdorff spaces, called irreducible spaces, was introduced by MacDonald [18]. Pipitone and Russo [27] have defined S-connected spaces. In [34] Thompson proved that these two notions are equivalent. It should be also noticed that Levine has defined the so-called D-spaces [16], which are irreducible spaces, in fact. On the other hand, the notion of hyperconnected spaces, due to Steen and Seebach [32] is equivalent to the notion of D-spaces (Sharma [29]). Some properties of hyperconnected spaces were investigated by Noiri [22].

2. Preliminaries

Throughout the present paper (X, τ) and (Y, σ) denote topological spaces on which no separation axioms are assumed. The closure (resp. interior) in (X, τ) of a subset S of (X, τ) will be denoted by cl (S) (resp. int (S)). The set S is said to be regular open (resp. regular closed) in (X, τ) , if S = int (cl (S)) (resp. S = cl (int (S))). A subset S of X is said to be semi-open [15] (resp. α -open [21]) if $S \subset cl (int (S))$ (resp. $S \subset int (cl (int (S)))$). Levine defined [15] S as semi-open if there exists an open subset G of (X, τ) such that $G \subset S \subset cl (G)$. The complement of a semi-open set is said to be semi-closed [4]. The semi-closure of a subset S of (X, τ) [4], denoted by scl (S), is defined as an intersection of all semi-closed sets of (X, τ) containing S. The set scl (S)is semi-closed. The semi-interior of S in (X, τ) [4], denoted by sint (S), is defined as a union of all semi-open subsets A of (X, τ) such that $A \subset S$. It is well known that

Received by the editors: 15.08.2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 54C08,\ 54G05.$

Key words and phrases. Semi-open, α -open sets, connected, disconnected spaces, almost continuity (S&S), α -continuity, irresoluteness, *R*-map, semi-homeomorphism.

 $X \setminus \operatorname{sint} (A) = \operatorname{scl} (X \setminus A)$ and $X \setminus \operatorname{scl} (A) = \operatorname{sint} (X \setminus A)$ [4, Theorem 1.6]. The family of all semi-open (resp. semi-closed; α -open; closed; regular open) subsets of (X, τ) we denote by SO (X, τ) (resp. SC (X, τ) ; τ^{α} ; c (τ) ; RO (X, τ)). The family τ^{α} forms a topology on X, different from τ , in general. The following inclusions hold in each (X, τ) : $\tau \subset \tau^{\alpha} \subset \operatorname{SO}(X, \tau)$. The inclusion $\tau \subset \operatorname{SO}(X, \tau)$ implies c $(\tau) \subset \operatorname{SC}(X, \tau)$. The reverses of these inclusions are not necessarily true, in general. A topological space (X, τ) is said to be semi-connected (briefly: S-connected), if X is not the union of two disjoint nonempty semi-open subsets of (X, τ) . In the opposite case (X, τ) is called semi-disconnected (briefly: S-disconnected). Pipitone and Russo [27, Esempio 3.3, 11, p. 30] showed that connectedness does not imply S-connectedness, in general. A topological space (X, τ) is said to be extremally disconnected (briefly: e.d.), if cl $(G) \in \tau$ for each $G \in \tau$.

3. p. S-disconnectedness and s.p. S-disconnectedness

In 1983 Janković proved the following characterization of e.d. spaces: an (X, τ) is e.d. if and only if SO $(X, \tau) = \tau^{\alpha}$ [13, Theorem 2.9(f)]. Later (in 1984), Reilly and Vamanamurthy showed that (X, τ) is disconnected if and only if (X, τ^{α}) is disconnected [28, Theorem 2]. These two theorems give a motivation to investigate S-disconnectedness of not e.d. spaces from the connectedness point of view. For e.d. spaces we have what follows: an (X, τ) is disconnected if and only if it is S-disconnected [12, Theorem 3.2(2)].

Definition 3.1. A not e.d. topological space (X, τ) is called to be *properly Sdisconnected* (briefly: *p. S-disc.*), if there exist $A, U \subset X$ such that $A \in SO(X, \tau) \setminus \tau^{\alpha}$, $U \in \tau^{\alpha}$, $U \cup A = X$, and $U \cap A = \emptyset$.

Theorem 3.2. Let (X, τ) be a topological space. The following are equivalent:

- 1. (X, τ) is p. S-disc.
- 2. There exist $A, U \subset X$ such that $A \in SO(X, \tau) \setminus \tau^{\alpha}$, $U \in RO(X, \tau)$, $U \cup A = X$, and $U \cap A = \emptyset$.
- 3. There exist $A, U \subset X$ such that $A \in SO(X, \tau) \setminus \tau$, $U \in RO(X, \tau)$, $U \cup A = X$, and $U \cap A = \emptyset$.
- 4. There exist $A, U \subset X$ such that $A \in SO(X, \tau) \setminus \tau^{\alpha}$, $U \in \tau$, $U \cup A = X$, and $U \cap A = \emptyset$.
- 5. There exist $A, U \subset X$ such that $A \in SO(X, \tau) \setminus RO(X, \tau), U \in RO(X, \tau), U \cup A = X$, and $U \cap A = \emptyset$.
- 6. There exist $A, U \subset X$ such that $A \in SO(X, \tau) \setminus \tau$, $U \in \tau$, $U \cup A = X$, and $U \cap A = \emptyset$.

Proof. Implications: $(2) \Rightarrow (3), (4) \Rightarrow (1), (3) \Rightarrow (5), (3) \Rightarrow (6)$ are obvious.

(1) \Rightarrow (2). By hypothesis there exist sets $A \in \text{SO}(X,\tau) \setminus \tau^{\alpha}$, $U \in \tau^{\alpha}$ such that $U \cup A = X$ and $U \cap A = \emptyset$. (2) follows from [9, Lemma 2.2], because $U \in \tau^{\alpha} \cap \text{SC}(X,\tau)$. (3) \Rightarrow (4). Let $A, U \subset X$ be such that $A \in \text{SO}(X,\tau) \setminus \tau$, $U \in \text{RO}(X,\tau)$, $U \cup A = X$, and $U \cap A = \emptyset$. Suppose $A \in \tau^{\alpha} \setminus \tau$. Hence $A \subset \text{int}(\text{cl}(\text{int}(A)))$ and A is regular closed. Therefore $A \in \tau$. A contradiction.

 $(5) \Rightarrow (3)$. Suppose $A \in \tau \setminus \text{RO}(X, \tau)$. Then A = int(A) = int(cl(int(A))), because A is regular closed. Hence A is regular open. A contradiction.

Let us remark that in Definition 3.1 and in conditions (2)–(6) of Theorem 3.2 we have $\emptyset \neq U \neq X$.

Example 3.3. (a). Consider $X = \{a, b, c\}$ with the topology

 $(6) \Rightarrow (3)$. Use [9, Lemma 2.2(2)].

$$\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$$

Since SO $(X, \tau) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\tau^{\alpha} = \tau$, then the equality $X = \{a\} \cup \{b, c\}$ implies p. S-disconnectedness of (X, τ) .

(b). Take the space of reals \mathbb{R} with the usual topology. Then \mathbb{R} is p. S-disc., since $\mathbb{R} = (-\infty, a] \cup (a, +\infty)$.

Definition 3.4. A not e.d. topological space (X, τ) is called to be *super-properly S*-disconnected (briefly: *s.p. S*-disc.), if there exist $A, B \subset X$ such that $A, B \in$ SO $(X, \tau) \setminus \tau^{\alpha}, A \cup B = X$, and $A \cap B = \emptyset$.

Example 3.5. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}\}$. Since $\{a, b\}, \{c, d\} \in SO(X, \tau) \setminus \tau^{\alpha}$ and $X = \{a, b\} \cup \{c, d\}$, then (X, τ) is s.p. S-disc.

It should be noticed that the space from Example 3.3 is not s.p. S-disc.

The following remark is obvious.

Remark 3.6. A topological space (X, τ) is S-disconnected if and only if (X, τ) is s.p. S-disc. or p. S-disc. or disconnected.

If (X, τ) is p. S-disc. or s.p. S-disc., then there exists $A \in SO(X, \tau) \setminus \tau$. The reverse implication is not true, in general, as the following example shows.

Example 3.7. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$. For this space we have SO $(X, \tau) \setminus \tau = \{\{a, b\}, \{a, c\}\}$.

Observe that the spaces in Examples 3.3 and 3.5 are connected.

Remark 3.8. Example 3.7 shows that there exists a connected space, which is not p. *S*-disc.

143

Example 3.9. Let $X = \mathbb{R}^2 \setminus D$, where $D = \{(x, y) : x = 0\}$. In X consider the subset topology τ of the Euclidean topology of the plane. If $U = \{(x, y) \in X : x < 0\}$ and $V = \{(x, y) \in X : x > 0\}$, then it is clear that (X, τ) is not connected. Let now

$$\begin{split} A &= \{ (x,y) \in X : \ y < 0 \} \cup \{ (x,y) \in X : \ y = 0, x \in \mathbb{Q} \}, \\ B &= \{ (x,y) \in X : \ y > 0 \} \cup \{ (x,y) \in X : \ y = 0, x \in \mathbb{R} \setminus \mathbb{Q} \}, \end{split}$$

where \mathbb{Q} stands for the set of rationals. One easily checks that $A, B \in SO(X, \tau) \setminus \tau^{\alpha}$. This shows that (X, τ) is s.p. S-disc. Note that if a < b and $ab \neq 0$, then we can put also

$$\begin{split} &A = \{(x,y) \in X: \; y < 0\} \cup \{(x,y) \in X: \; y = 0, \; x = a \text{ or } x > b\}, \\ &B = \{(x,y) \in X: \; y > 0\} \cup \{(x,y) \in X: \; y = 0, \; x < a \text{ or } a < x \leq b\}. \end{split}$$

Example 3.10. Let $X = \{a, b, c, d\}$ and

$$\tau = \{\emptyset, X, \{a\}, \{b, c, d\}, \{b\}, \{d\}, \{b, d\}, \{a, b\}, \{a, d\}, \{a, b, d\}\}.$$

For this space we have $\tau = \tau^{\alpha}$ and SO $(X, \tau) = \tau \cup \{\{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}\}$. Partitions $X = \{a\} \cup \{b, c, d\} = \{a, d\} \cup \{b, c\}$ show respectively that (X, τ) is disconnected and p. S-disc. One observes that this space is not s.p. S-disc.

Example 3.11. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. The space (X, τ) is disconnected and not p. S-disc.

Theorem 3.12. A topological space (X, τ) is s.p. S-disc. if and only if there exists a set $A \in SO(X, \tau) \setminus \tau^{\alpha}$ with $scl(A) \in (SO(X, \tau) \setminus \tau^{\alpha}) \cap (SC(X, \tau) \setminus c(\tau^{\alpha}))$.

Proof. Necessity. Let (X, τ) be s.p. S-disc., i.e., for certain $A, B \in SO(X, \tau) \setminus \tau^{\alpha}$ we have $X = A \cup B$ and $A \cap B = \emptyset$. Clearly $A, B \in SC(X, \tau) \setminus c(\tau^{\alpha})$. Thus for A we obtain scl $(A) = A \in (SO(X, \tau) \setminus \tau^{\alpha}) \cap (SC(X, \tau) \setminus c(\tau^{\alpha}))$ (analogously for B).

Sufficiency. Let (X, τ) be such a space that for a certain $U \in \mathrm{SO}(X, \tau) \setminus \tau^{\alpha}$ we have $\mathrm{scl}(U) \in (\mathrm{SO}(X, \tau) \setminus \tau^{\alpha}) \cap (\mathrm{SC}(X, \tau) \setminus \mathrm{c}(\tau^{\alpha}))$. Put $A = \mathrm{scl}(U)$. So, for $B = X \setminus \mathrm{scl}(U)$ we infer without difficulties that $B \in \mathrm{SO}(X, \tau) \setminus \tau^{\alpha}$. Therefore (X, τ) is s.p. S-disc. and the proof is complete. \Box

Lemma 3.13. Assume that for a (X, τ) the two conditions below hold.

- (*) There exist disjoint subsets $A \in SO(X, \tau) \setminus \tau^{\alpha}$, $B \in SO(X, \tau) \setminus \{\emptyset\}$ with $X = A \cup B$.
- (**) There exists a point $x \in (A \setminus int (cl(int(A)))) \setminus (cl(B) \setminus B)$, where $cl(B) \neq X$.

Then (X, τ) is disconnected.

Proof. Suppose (X, τ) is connected. We have

$$X = \operatorname{int} \left(\operatorname{cl} \left(\operatorname{int} \left(A \right) \right) \cup \operatorname{cl} \left(\operatorname{int} \left(B \right) \right) \right) \subset \operatorname{int} \left(\operatorname{cl} \left(\operatorname{int} \left(A \right) \right) \right) \cup \operatorname{cl} \left(\operatorname{int} \left(B \right) \right) \subset X$$

(see [1, Lemma 1.1]) and $int(A) \neq \emptyset \neq int(B)$. Thus, $X = int(cl(int(A))) \cup cl(int(B))$. One easily checks that

$$\operatorname{int}\left(\operatorname{cl}\left(\operatorname{int}\left(A\right)\right)\right) \cap \operatorname{cl}\left(\operatorname{int}\left(B\right)\right) = \emptyset \tag{3.1}$$

and similarly

$$\operatorname{int}\left(\operatorname{cl}\left(\operatorname{int}\left(B\right)\right)\right) \cap \operatorname{cl}\left(\operatorname{int}\left(A\right)\right) = \emptyset.$$
(3.2)

Since int $(cl (int (A))) \cap int (cl (int (B))) = \emptyset$, int $(cl (int (A))) \neq \emptyset \neq int (cl (int (B)))$, we infer from the supposition that $X \setminus (int (cl (int (A))) \cup int (cl (int (B)))) \neq \emptyset$. So, we obtain $X = int (cl (int (A))) \cup int (cl (int (B))) \cup (cl (B) \cap cl (A))$, because cl (int (cl (S))) = cl (S) for any semi-open subset of every topological space. Let $cl (A) \neq X$ (the case cl (A) = X we leave to the reader). It is easy to see that we have $cl (A) \setminus A = X \setminus (A \cup int (B))$, $cl (B) \setminus B = X \setminus (B \cup int (A))$, and consequently $(cl (A) \setminus A) \cap (cl (B) \setminus B) = \emptyset$. So, we get what follows: X = $int (cl (int (A))) \cup int (cl (int (B))) \cup ((A \cup (cl (A) \setminus A)) \cap (B \cup (cl (B) \setminus B))) =$ $int (cl (int (A))) \cup int (cl (int (B))) \cup (A \cap (cl (B) \setminus B)) \cup (B \cap (cl (A) \setminus A))$. Let xbe a point fulfilling the condition (**). We shall show that $x \notin int (cl (int (B)))$. Suppose not. By (3.2) we get int (cl (int (B))) \cap int (A) = \emptyset; hence $x \notin cl (int (A))$ what contradicts $x \in A \in SO (X, \tau)$. Therefore $x \in A \cap (cl (B) \setminus B)$. But, $x \notin cl (B) \setminus B$ by (**). This shows that (X, τ) is disconnected. \Box

Theorem 3.14. Each s.p. S-disc. space fulfilling the condition $(\star\star)$ is disconnected.

Proof. It follows directly from Definition 3.4 and Lemma 3.13.

Here, from the connectedness and e.d. points of view, the following is worth noticing.

Example 3.15. A space (X, τ) may be disconnected and not e.d. Consider $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}\}$. We have $X = \{a\} \cup \{b, c, d\}$ and $cl(\{a, b\}) = \{a, b, c\} \notin \tau$.

Example 3.3(b) guarantees the existence of a not e.d. space which is connected.

Example 3.16. (a). Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. This space is e.d. and connected. See also Example 3.7.

(b). The space from Example 3.11 is e.d. and disconnected.

4. Some properties

Lemma 4.1. Let (X, τ) be any space. If $S \in SO(X, \tau) \setminus \tau^{\alpha}$ then $cl(int(S)) \in SO(X, \tau) \setminus \tau^{\alpha}$.

Proof. It is clear that $cl(int(S)) \in SO(X, \tau)$. If we suppose $cl(int(S)) \in \tau^{\alpha}$, then $S \subset cl(int(S)) \subset int(cl(int(cl(int(S))))) = int(cl(int(S)))$. A contradiction.

Theorem 4.2. If (X, τ) is s.p. S-disc., then (X, τ) is p. S-disc.

Proof. Assume that (X, τ) is s.p. S-disc. Then, for certain $A, B \in SO(X, \tau) \setminus \tau^{\alpha} \subset$ SO $(X, \tau) \setminus \tau$ we have $X = A \cup B$ and $A \cap B = \emptyset$. Clearly $A \cup cl$ (int (B)) = X and hence int $(A) \cup cl$ (int (B)) $\subset X$. But, with [1, Lemma 1.1(b)] we obtain X =int $(A \cup cl$ (int (B))) \subset int $(A) \cup cl$ (int (B)). So, consequently

$$X = \operatorname{int} (A) \cup \operatorname{cl} (\operatorname{int} (B)).$$

It is easy to check that $\operatorname{int}(A) \cap \operatorname{cl}(\operatorname{int}(B)) = \emptyset$. Observe that $\operatorname{int}(A) \neq \emptyset$ and $\operatorname{cl}(\operatorname{int}(B))$ is a nonempty semi-open subset of (X, τ) , which is not open (by Lemma 4.1). Thus, by Theorem 3.2(6), (X, τ) is p. S-disc.

Theorem 4.2 implies the following obvious corollary.

Corollary 4.3. If (X, τ) is s.p. S-disc., then there exists an $A \subset X$ such that $A \in c(\tau) \cap (SO(X, \tau) \setminus \tau).$

Theorem 4.4. A connected topological space (X, τ) is p. S-disc. if and only if there exists $A \in SO(X, \tau) \setminus \tau$ with $cl(A) \notin \tau$.

Proof. We apply Theorem 3.2(6). Necessity is obvious. For a strong sufficiency, i.e., with any (X, τ) , suppose that $A \in SO(X, \tau) \setminus \tau$ and $cl(A) \notin \tau$. Then, since $cl(A) \in SO(X, \tau)$, from $X = (X \setminus cl(A)) \cup cl(A)$ it follows that (X, τ) is p. S-disc. \Box Remark 4.5. If a space (X, τ) is not e.d. then there exists an $A \in SO(X, \tau) \setminus \tau^{\alpha}$ with $scl(A) \notin \tau$.

Proof. Suppose for each $A \in SO(X, \tau) \setminus \tau^{\alpha}$, $scl(A) \in \tau$. Since (X, τ) is not e.d., there is an $A' \in \tau^{\alpha}$ such that $scl(A') \notin \tau$ [31, Theorem 2.1(iii)]. But with [14, Proposition 2.7(a)] we have scl(A') = int(cl(A')). A contradiction.

Corollary 4.6. If a space (X, τ) is connected and not p. S-disc., then for each $A \in$ SO $(X, \tau) \setminus \tau$ we have cl (A) = X.

Proof. By Theorem 4.4 we get that either X = cl(A) or $X \neq cl(A) \in \tau$, but obviously the second relation is not possible.

Theorem 4.7. Let (X, τ) be a connected topological space. Then, the following are equivalent:

(a) (X, τ) is s.p. S-disc. or p. S-disc.

(b) There exists an $A \in SO(X, \tau) \setminus \tau$ with $scl(A) \neq X$.

Proof. Strong (a) \Rightarrow (b). Let (X, τ) be p. *S*-disc. Then $X = U \cup A$ for such sets $U \in \tau \setminus \{X, \emptyset\}, A \in \text{SO}(X, \tau) \setminus \tau$ that $U \cap A = \emptyset$. Consider the set scl (A). Since A is closed, then scl $(A) = A \neq X$.

(b) \Rightarrow (a). Assume that for a certain $A' \in \text{SO}(X, \tau) \setminus \tau$ we have $\text{scl}(A') \neq X$. Put A = scl(A'). Hence $\emptyset \neq B = X \setminus A \neq X$ and by [33, Corollary 2.2] we have $A, B \in \text{SO}(X, \tau)$. The sets A and B cannot be both α -open in (X, τ) , since (X, τ) is connected by hypothesis. Thus our space is s.p. S-disc. \Box

Lemma 4.8. If a connected space (X, τ) is p. S-disc., then there exist sets $U, V \in$ RO $(X, \tau) \setminus \{\emptyset\}$ such that $X = \operatorname{cl}(U) \cup V$, $\operatorname{cl}(U) \cap V = \emptyset$ and $\operatorname{cl}(U) \cap \operatorname{cl}(V) \neq \emptyset$.

Proof. Let (X, τ) be p. S-disc. and connected. By Theorem 3.2(5) there exist sets $A \in SO(X, \tau) \setminus RO(X, \tau)$, $V \in RO(X, \tau)$ such that $X = A \cup V$ and $A \cap$ $V = \emptyset$ (obviously $V \neq \emptyset$). Then $A \in (SO(X, \tau) \cap SC(X, \tau)) \setminus \{\emptyset, X\}$ and by [6, Proposition 2.1(c)] there exists a set $U \in RO(X, \tau) \setminus \{\emptyset\}$ such that $U \subset A \subset cl(U)$. Hence A = cl(A) = cl(U) and $cl(U) \cap V = \emptyset$. Observe that if $cl(U) \cap cl(V) = \emptyset$, then (X, τ) is disconnected and this contradicts connectedness of (X, τ) . Therefore, $cl(U) \cap cl(V) \neq \emptyset$. □

By the proof of Lemma 4.8 it can be easily deduced what follows.

Theorem 4.9. If a connected space (X, τ) is p. S-disc., then there exists an open but not regular open, disconnected subset of (X, τ) .

Proof. Our consideration relies on the proof of Lemma 4.8 (including the notation). We shall show only that the set $U \cup V$ is not regular open. Suppose that $U \cup V \in$ RO (X, τ) . Hence int $(\operatorname{cl}(U) \cup \operatorname{cl}(V)) = U \cup V \subsetneq X$. But, int $(\operatorname{cl}(U) \cup \operatorname{cl}(V)) = X$, a contradiction.

Corollary 4.10. If (X, τ) is S-disconnected and connected, then there exists an open disconnected subset of (X, τ) .

Proof. See Remark 3.6 and Theorem 4.9.

Lemma 4.11. If a space (X, τ) is connected and if there exist sets $U, V \in \text{RO}(X, \tau) \setminus \{\emptyset\}$ such that $X = \text{cl}(U) \cup V$ and $\text{cl}(U) \cap V = \emptyset$, then (X, τ) is p. S-disc.

Proof. The set $cl(U) \in SO(X, \tau) \setminus \tau$, because (X, τ) is connected. So, by Theorem 3.2(3), (X, τ) is p. S-disc.

Theorem 4.12. Let a space (X, τ) be connected. Then the following are equivalent:

- 1. (X, τ) is p. S-disc.
- 2. There exist $U, V \in \text{RO}(X, \tau) \setminus \{\emptyset\}$ such that $X = \operatorname{cl}(U) \cup V$, $\operatorname{cl}(U) \cap V = \emptyset$.
 - 3. There exist $U, V \in \tau \setminus \{\emptyset\}$ such that $X = \operatorname{cl}(U) \cup V$, $\operatorname{cl}(U) \cap V = \emptyset$.

- 4. There exist $U, V \in \tau^{\alpha} \setminus \{\emptyset\}$ such that $X = \operatorname{cl}(U) \cup V$, $\operatorname{cl}(U) \cap V = \emptyset$.
- 5. There exist $U, V \in \operatorname{RO}(X, \tau^{\alpha}) \setminus \{\emptyset\}$ such that $X = \alpha \operatorname{cl}(U) \cup V$, $\alpha \operatorname{cl}(U) \cap V = \emptyset$, where $\alpha \operatorname{cl}(.)$ denotes the closure operator with respect to τ^{α} -topology on X.
- 6. There exist $U, V \in \tau^{\alpha} \setminus \{\emptyset\}$ such that $X = \alpha \operatorname{cl}(U) \cup V$, $\alpha \operatorname{cl}(U) \cap V = \emptyset$.

Proof. $(1) \Leftrightarrow (2)$. Follows by Lemmas 4.8 and 4.11.

 $(2) \Rightarrow (3)$. Obvious.

(2) \Leftarrow (3). It can be easily seen that (3) \Rightarrow (1): by Theorem 3.2(6) and connectedness of (X, τ) .

 $(3) \Rightarrow (4)$. Obvious.

(3) \Leftarrow (4). We shall show only that (4) \Rightarrow (1). By hypothesis we have $U \subset$ int (cl (int (U))) and $U \neq \emptyset$. Hence cl (U) \in SO (X, τ) and cl (U) $\neq \emptyset$. Also, cl (U) $\notin \tau^{\alpha}$ up to connectedness of (X, τ) [28, Theorem 2]. Therefore (X, τ) is p. Sdisc.

 $(5)\Leftrightarrow(2)$ and $(6)\Leftrightarrow(4)$ follow by the proof of [14, Corollary 2.3] and [14, Proposition 2.2].

Remark 4.13. In Theorem 3.2, the class SO (X, τ) can be replaced also by SO (X, τ^{α}) [21, Proposition 3] and the class RO (X, τ) by RO (X, τ^{α}) .

Theorem 4.14. Let (X, τ) be a connected space. The following are equivalent:

- 1. (X, τ) is p. S-disc.
- 2. There exists a set $B \in SC(X, \tau)$ such that $B \neq X$ and $int(B) \neq \emptyset$.
- 3. There exists a set $B \in SC(X, \tau)$ such that $B \neq X$ and sint $(B) \neq \emptyset$.

Proof. $(1) \Rightarrow (2)$. Let (X, τ) be p. S-disc. By hypothesis the space (X, τ) is connected. On the other hand, from Theorem 3.2(5) we infer that there exists a set $B \in \text{RO}(X, \tau) \subset \text{SC}(X, \tau)$ with $B \neq X$ and int $(B) \neq \emptyset$.

 $(2) \Rightarrow (3)$. Obvious.

 $(3)\Rightarrow(1).$ Suppose there exists a set $B \in SC(X,\tau)$ with $B \neq X$ and $sint(B) \neq \emptyset$. From [4, Theorems 1.4(2) and 1.12] we get that B is semi-closed if and only if $sint(scl(B)) \subset B$. Hence $\emptyset \neq sint(scl(B)) \neq X$. By [33, Lemma 2.7], $sint(scl(B)) \in SO(X,\tau) \cap SC(X,\tau)$. Put U = int(sint(scl(B))). Clearly $U \neq \emptyset$ and $U \neq X$. We have $X \setminus U = cl(scl(sint(X \setminus B)))$. and $A = X \setminus U \in SO(X,\tau)$, since by [33, Lemma 2.2(iii)], the set $scl(sint(X \setminus B))$ belongs to $SO(X,\tau)$. Also $\emptyset \neq A \neq X$. The set A cannot be a member of τ , because (X,τ) is connected. So, by Theorem 3.2(6) the space (X,τ) is p. S-disc.

5. Mappings and p. S-disconnectedness

A function $f: (X, \tau) \to (Y, \sigma)$ is called *contra-continuous* [8] if the preimage $f^{-1}(V) \in c(\tau)$ for each $V \in \sigma$.

Remark 5.1. (a). From [9, Theorem 5.1] and Example 3.3 we infer that there exists a subclass of not e.d. spaces (X, τ) such that any contra-continuous mapping $f: (X, \tau) \to (Y, \sigma)$, where (Y, σ) is T_1 , is constant.

(b). Also with [9, Theorem 5.1] we get that if a bijection $f: (X, \tau) \to (\mathbb{R}, \tau_e), \tau_e$ the usual topology, is open and contra-continuous then (X, τ) is not p. S-disc. Therefore, there is no open and contra-continuous bijection $f: (\mathbb{R}, \tau_e) \to (\mathbb{R}, \tau_e)$ (compare Example 3.3(b)).

A metric space X is connected if and only if each continuous mapping $f:X\to\mathbb{R}$ is Darboux. This implies

Remark 5.2. From Example 3.9 we infer that there exist an s.p. S-disc. metric space X and a continuous mapping $f: X \to \mathbb{R}$ which is not Darboux.

A function $f: (X, \tau) \to (Y, \sigma)$ is called *almost continuous* (in the sense S& S) [30, Theorem 2.2] (resp. α -continuous [20]; *irresolute* [5]) if the preimage $f^{-1}(V) \in \tau$ (resp. $f^{-1}(V) \in \tau^{\alpha}$; $f^{-1}(V) \in SO(X, \tau)$) for every $V \in RO(Y, \sigma)$ (resp. $V \in \sigma$; $V \in SO(Y, \sigma)$). α -continuous mappings are called *strongly semi-continuous* in [24]. A function $f: (X, \tau) \to (Y, \sigma)$ is called *pre-semi-open* [5] if $f(A) \in SO(Y, \sigma)$ for each $A \in SO(X, \tau)$. A bijection $f: (X, \tau) \to (Y, \sigma)$ is said to be a *semi-homeomorphism* (in the sense of Crossley and Hildebrand) [5], if it is pre-semi-open and irresolute. It is well known that connected spaces are preserved under semi-homeomorphims [5, Theorem 2.12] or almost continuous surjections [17, Theorem 4] or α -continuous surjections [24, Theorem 3.1]. Thus, the following is clear.

Remark 5.3. Let (X, τ) be p. S-disc. and connected, and let $f : (X, \tau) \to (Y, \sigma)$ be a semi-homeomorphism or an almost continuous surjection, or α -continuous surjection. Then (Y, σ) is connected.

For the case of semi-homeomorphism we shall show a stronger result in the sequel.

Theorem 5.4. Let $f : (X, \tau) \to (Y, \sigma)$ be a continuous surjection and (Y, σ) be a p. S-disc. connected space. Then, there is a proper subset of X which is open and disconnected (in (X, τ)).

Proof. From Theorem 4.9 we infer that there exists an open and disconnected proper subset S of (Y, σ) . So, $f^{-1}(S)$ is an open and disconnected proper subset of (X, τ) . \Box

Corollary 5.5. Let $f : (X, \tau) \to (Y, \sigma)$ be a continuous surjection and (Y, σ) be a connected and S-disconnected space. Then, there is an open disconnected subset of (X, τ) .

Proof. Remark 3.6 and Theorem 5.4.

Theorem 5.6. Let $f : (X, \tau) \to (Y, \sigma)$ be a homeomorphism and (Y, σ) be p. S-disc. and connected. Then $X = A \cup B$, where $A \cap B = \emptyset$, A is an open disconnected subset of (X, τ) , and $B \in c(\tau) \setminus \tau$.

Proof. We apply Theorems 5.4 and an obvious fact that there is no open bijection $f: (X, \tau) \to (Y, \sigma)$, where (X, τ) is disconnected and (Y, σ) is connected.

Theorem 3.2 is followed by the series of results given below, concerning preimages and images of p. *S*-disc. spaces under some well known types of functions. Straightforward proofs are omitted.

Theorem 5.7. Let (X, τ) be connected, (Y, σ) be s.p. S-disc., and let $f : (X, \tau) \to (Y, \sigma)$ be an irresolute surjection. Then (X, τ) is p. S-disc.

A function $f: (X, \tau) \to (Y, \sigma)$ is called *completely continuous* [2] (resp. an *R-map* [3]; α -irresolute [19]) if the preimage $f^{-1}(V) \in \operatorname{RO}(X, \tau)$ (resp. $f^{-1}(V) \in \operatorname{RO}(X, \tau)$; $f^{-1}(V) \in \tau^{\alpha}$) for every $V \in \sigma$ (resp. $V \in \operatorname{RO}(Y, \sigma)$; $V \in \sigma^{\alpha}$).

Theorem 5.8. Let (X, τ) be not e.d. and connected, (Y, σ) be p. S-disc., and let a surjection $f: (X, \tau) \to (Y, \sigma)$ fulfil one of the following conditions:

- 1. f is irresolute and almost continuous;
- 2. f is irresolute and it is an R-map;
- 3. f is irresolute and α -continuous.

Then (X, τ) is p. S-disc.

Remark 5.9. If (X, τ) is e.d. and connected, if (Y, σ) is p. S-disc., then it is clear by [13, Theorem 2.9(b)] and [11, Lemma 1(i)] (for the case (3)) that there is no surjection $f: (X, \tau) \to (Y, \sigma)$ fulfilling (1) or (2) or (3) of Theorem 5.8.

Obviously, (2) is a particular case of (1) in Theorem 5.8. Since each continuous function is almost continuous, each completely continuous function is an *R*-map and each α -irresolute function is α -continuous, therefore the next corollary is obvious. None of these three implications is reversible, see respectively: [30, Example 2.1], [26, Example 4.6], and [19, Example 1].

Corollary 5.10. Let (X, τ) be not e.d. and connected, (Y, σ) be p. S-disc., and a surjection $f : (X, \tau) \to (Y, \sigma)$ fulfils one of the following conditions:

(1') f is irresolute and continuous;

(2') f is irresolute and completely continuous;

(3) f is irresolute and α -irresolute.

Then (X, τ) is p. S-disc.

Remark 5.11. (a). [7, Example 7.1] shows that there exists an irresolute mapping, which is not almost continuous and hence: not an R-map, not continuous, and not completely continuous.

(b). [7, Example 7.2] guarantees the existence of not irresolute mapping, which is continuous (hence almost continuous).

(c). Notions of irresolutness and α -continuity are independent of each other, see [25, Example 3.11 and Theorem 3.12]. In [10] the author has shown that concepts of irresolutness and α -irresolutness are independent of each other.

Example 5.12. Let $X = \{a, b\} = Y$, $\tau = \{\emptyset, X, \{a\}\}$, and $\sigma = \{\emptyset, Y, \{b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. then f is an R-map, but it is not irresolute.

Example 5.13. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{b\}, \{a, c\}\}$, and $\sigma = \{\emptyset, Y, \{b\}\}$. Then, the identity function $f : (X, \tau) \to (Y, \sigma)$ is completely continuous and not irresolute.

The result from Theorem 5.8 for the case (2) may be strengthened (see Theorem 5.20 below).

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be almost open [30] (resp. *R-open*; α -open [20]) if the image $f(U) \in \sigma$ (resp. $f(U) \in \operatorname{RO}(Y, \sigma)$; $f(U) \in \sigma^{\alpha}$) for every $U \in \operatorname{RO}(X, \tau)$ (resp. $U \in \operatorname{RO}(X, \tau)$; $U \in \tau$).

Theorem 5.14. Let (X, τ) be p. S-disc., (Y, σ) be not e.d. and connected, and let a bijection $f : (X, \tau) \to (Y, \sigma)$ fulfil one of the following conditions:

- (a) f is pre-semi-open and almost open;
- (b) f is pre-semi-open and R-open;
- (c) f is pre-semi-open and α -open;

Then (Y, σ) is p. S-disc.

Proof. Apply respective parts of Theorem 3.2 (obviously: $(b) \Rightarrow (a)$).

Remark 5.15. By the same reasoning as mentioned in Remark 5.9, there is no bijection between a p. S-disc. space (X, τ) and an e.d. connected space (Y, σ) fulfilling (a) or (b) or (c) of Theorem 5.14.

Remark 5.16. (a). [23, Example 1.8] shows that there exists an almost open function (in fact, *R*-open), which is not pre-semi-open.

(b). Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X\}$, and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. The mapping $f : (X, \tau) \to (Y, \sigma)$ defined as follows: f(a) = a, f(b) = f(c) = b, is almost open, but it is not *R*-open.

Example 5.17. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{b\}, \{a, c\}\}$, and $\sigma = \{\emptyset, Y, \{b\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ as in Remark 5.16(b). Then, f is pre-semi-open and not almost open (hence not *R*-open).

Example 5.18. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{b\}, \{b, c\}\}$, and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. The identity function $f : (X, \tau) \to (Y, \sigma)$ is pre-semi-open and not α -open.

Example 5.19. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a\}\}$, and $\sigma = \{\emptyset, Y, \{a\}, \{b, c\}\}$. We define a mapping $f : (X, \tau) \to (Y, \sigma)$ as follows f(a) = f(b) = a, f(c) = b. Then, f is α -open and not pre-semi-open.

Theorem 5.20. Let (X, τ) be connected, (Y, σ) be p. S-disc. and connected, and a surjection $f: (X, \tau) \to (Y, \sigma)$ be an R-map. Then (X, τ) is p. S-disc.

Proof. By Theorem 4.12(2) there exist $U_1, V_1 \in \operatorname{RO}(Y, \sigma) \setminus \{\emptyset\}$ such that $Y = \operatorname{cl}_Y(U_1) \cup V_1$ and $\operatorname{cl}_Y(U_1) \cap V_1 = \emptyset$. Clearly $\operatorname{cl}_Y(U_1)$ is regular closed in (Y, σ) . It is obvious that the set $f^{-1}(\operatorname{cl}_Y(U_1))$ is regular closed in (X, τ) . So, we have $X = f^{-1}(Y) = \operatorname{cl}_X(\operatorname{int}_X(f^{-1}(\operatorname{cl}_Y(U_1)))) \cup f^{-1}(V_1)$, where $U = \operatorname{int}_X(f^{-1}(\operatorname{cl}_Y(U_1))) \in \tau \setminus \{\emptyset\}, V = f^{-1}(V_1) \in \tau \setminus \{\emptyset\}$, and $\operatorname{cl}_X(U) \cap V = \emptyset$. This proves that (X, τ) is p. S-disc., since, by hypothesis, it is connected (Theorem 4.12(3)).

Theorem 5.21. Let (X, τ) be a connected p. S-disc. space and $f : (X, \tau) \to (Y, \sigma)$ be a semi-homeomorphism. Then (Y, σ) is connected and p. S-disc.

Proof. Since (X, τ) is connected and p. S-disc., by [5, Theorem 2.12] and Theorem 4.14(3) respectively, (X, τ) is connected and there exists a set $B \in \mathrm{SC}(X, \tau)$ with $B \neq X$ and $\mathrm{sint}_X(B) \neq \emptyset$. By [5, Theorem 2.12] the space (Y, σ) is connected. Obviously, $f(B) \neq Y$. Recall that for every semi-homeomorphism $f: X \to Y$ and any $B \subset X$ we have $f(\mathrm{sint}_X(B)) = \mathrm{sint}_Y(f(B))$ [5, Corollary 1.2]. So, $\mathrm{sint}_Y(f(B)) \neq \emptyset$. It is not difficult to see that each bijective pre-semi-open map preserves semi-closed sets. Therefore $f(B) \in \mathrm{SC}(Y, \sigma)$ and applying once more Theorem 4.14(3) we finish the proof.

Corollary 5.22. Let $f : (X, \tau) \to (Y, \sigma)$ be a homeomorphism, (X, τ) be connected and p. S-disc. Then, (Y, σ) is connected and p. S-disc.

Proof. [5, Theorem 1.9] and Theorem 5.21.

References

- [1] Andrijević, D., Semi-preopen sets, Mat. Vesnik, **38** (1986), 24–32.
- [2] Arya, S. P., Gupta, R., On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131–143.
- [3] Carnahan, D. A., Some properties related to compactness in topological spaces, Ph.D. thesis, University of Arkansas, 1973.
- [4] Crossley, C. G., Hildebrand, S. K., Semi-closure, Texas J. Sc., 22 (1971), no. 2-3, 99– 112.
- [5] Crossley, C. G., Hildebrand, S. K., Semi-topological properties, Fund. Math., 74 (1972), 233–254.
- [6] Di Maio, G., Noiri, T., On s-closed spaces, Indian J. Pure Appl. Math., 18 (1987), no. 3, 226–233.
- [7] Di Maio, G., Noiri, T., Weak and strong forms of irresolute functions, Third National Conference in Topology (Italian), Trieste 1986, Rend. Circ. Mat. Palermo, Suppl., 18 (1988), no. 2, 255-273.
- [8] Dontchev, J., Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), no. 2, 303–310.
- [9] Dontchev, J., Noiri, T., Contra-semicontinuous functions, Math. Pannonica, 10 (1999), no. 2, 159–168.
- [10] Duszyński, Z., On pre-semi-open mappings, submitted to Periodica Math. Hungar.
- [11] Garg, G. L., Sivaraj, D., Semitopological properties, Mat. Vesnik, 36 (1984), 137–142.
- [12] Jafari, S., Noiri, T., Properties of β-connected spaces, Acta Math. Hungar., 101 (2003), no. 3, 227–236.
- [13] Janković, D. S., On locally irreducible spaces, Ann. Soc. Sci. Bruxelles, 97 (1983), no. 2, 59–72.
- [14] Janković, D. S., A note on mappings of extremally disconnected spaces, Acta Math. Hung., 46 (1985), no. 1-2, 83–92.
- [15] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [16] Levine, N., Dense topologies, Amer. Math. Monthly, 75 (1968), 847–852.
- [17] Long, P. E., Carnahan, D. A., Comparing almost continuous functions, Proc. Amer. Math. Soc., 38 (1973), 413–418.
- [18] MacDonald, I. G., Algebraic geometry, W. A. Benjamin Inc., New York 1968, 13–22.
- [19] Maheshwari, S. N., Thakur, S. S., On α-irresolute mappings, Tamkang J. Math., 11 (1980), 205–214.
- [20] Mashhour, A. S., Hasanein, I. A., El-Deeb, S. N., α-continuous and α-open mappings, Acta Math. Hungar., 41 (1983), 213–218.
- [21] Njåstad, O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [22] Noiri, T., A note on hyperconnected sets, Mat. Vesnik, 3(16)(31) (1979), no. 1, 53-60.
- [23] Noiri, T., Semi-continuity and weak-continuity, Czechoslovak Mathematical Journal, 31(106) (1981), 314–321.
- [24] Noiri, T., A function which preserves connected spaces, Čas. Pěst. Mat., 107 (1982), 393–396.
- [25] Noiri, T., On α-continuous functions, Čas. Pěst. Mat., 109 (1984), 118–126.

- [26] Noiri, T., Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15 (1984), no. 3, 241–250.
- [27] Pipitone, V., Russo, G., Spazi semiconnessi a spazi semiaperti, Rend. Circ. Mat. Palermo, 24 (1975), no. 2, 273–285.
- [28] Reilly, I. L., Vamanamurthy, M. K., Connectedness and strong semi-continuity, Čas. pěst. mat., 109 (1984), 261–265.
- [29] Sharma, A. K., On some properties of hyperconnected spaces, Mat. Vesnik, 1(14)(29) (1977), no. 1, 25–27.
- [30] Singal, M. K., Singal, A. R., Almost-continuous mappings, Yokohama Math. J., 16 (1968), 63–73.
- [31] Sivaraj, D., A note on extremally disconnected spaces, Indian J. Pure Appl. Math., 17(12) (1986), 1373–1375.
- [32] Steen, L. A., Seebach, Jr., J. A., Counterexamples in Topology, Holt, Reinhart and Winston, Inc., New York 1970.
- [33] Tadros, S. F., Khalaf, A. B., On regular semi-open sets and s^{*}-closed spaces, Tamkang J. Math., 23 (1992), no. 4, 337–348.
- [34] Thompson, T., Characterizations of irreducible spaces, Kyungpook Math. J., 21 (1981), no. 2, 191–194.

Casimirus the Great University Department of Mathematics pl. Weyssenhoffa 11 85–072 Bydgoszcz Poland