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Abstract. Let C : z = z(t), t ∈ [a, b], be a smooth Jordan curve of the

class C2 and let f be a complex univalent function of the class C1 in a

domain which contains the curve C together with its interior. Suppose

that the origin lies inside of C and f(0) = 0. Let Γ = f(C) and suppose

that Γ is starlike with respect to the origin. Let consider the radius vector
−→
R from 0 to a point w ∈ Γ and let

−→
N be the outer normal to Γ at the

point w = f [z(t)]. Let denote by ω = (
−→
N,
−→
R ) the angle between

−→
N and

−→
R and consider the vector

−→
V starting from w, such that sinΨ = γ sin ω,

where Ψ = (
−→
N,
−→
V ) and γ is a positive number. We say that the starlike

curve Γ = f(C) has the regular refraction property, with index γ, iff the

argument of the vector
−→
V is an increasing function of t ∈ [a, b]. The concept

of regular refraction property was introduced in [2] and developed in [3],

[4], [5], [6] and [7]. We mention that this concept is closed to the concept

of α-convexity introduced in [1]. In this paper we continue to study this

geometric property by introducing the concept of regular refraction interval

of a given function. We also give a significant example.

1. Preliminaries

Let f an analytic and univalent function in a domain D and let C : z = z(t),

t ∈ [a, b], be a smooth Jordan curve of the class C2. Suppose that D contains the

curve C together with its interior and that the origin lies inside of C and f(0) = 0.

Let Γ = f(C) and suppose that Γ is starlike with respect to 0.
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Let
−→
R be the radius vector from 0 to a point w ∈ Γ and let

−→
N be the outer

normal to Γ at the point w = f(z(t)). Let denote by ω = (
−→
N,
−→
R ) the angle between

−→
N and

−→
R and let consider the vector

−→
V starting from w, such that

sinΨ = γ sinω, (1.1)

where Ψ = (
−→
N,
−→
V ) and γ is a positive number.

From the optical point of view, we remark that if Γ separates two media of

different refraction indices and if
−→
R and

−→
V are the trajectories of the light in these

media (starling from the origin), then (1) is the well -known refraction law.

Definition 1.1. We say that the curve Γ = f(C) has the regular refraction property

with index γ, iff the argument of the vector
−→
V =

−→
V (t), defined by (1) is an increasing

function of t ∈ [a, b], i.e.
d

dt
arg

−→
V (t) ≥ 0, t ∈ [a, b]. (1.2)

We also say, in this case, that the function f has the regular refraction property

on C : z = z(t).

Sometimes we are interesting to study the property of regular refraction only

on some arcs of the curve C.

2. Main results

If we let ϕ = arg f(z) and χ = arg
−→
V , then we have

χ = ϕ+ ω − ψ.

If z = z(t) and if we denote ż, χ̇, ... the derivatives with respect to t, then we

have

χ̇ = ϕ̇+ Fω̇,

where

F = 1− γ cosω
[1− γ2 + γ2 cos2 ω]

1
2

= 1− γ√
1 + (1− γ2) tan2 ω

and ω = argP , with | sinω| ≤ 1
γ with

P =
żf ′(z)
if(z)

, z = z(t). (2.1)
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The condition (1.2) becomes

=
[
iP + F

Ṗ

P

]
≥ 0, t ∈ [a, b], (2.2)

where

F = 1− γ<P
[(1− γ2)|P |2 + γ2(<P )2]

1
2
, | sinω| ≤ 1

γ
, (2.3)

with P given by (2.1).

Hence we deduce the following result.

Theorem 2.1. The function f has the regular refraction property, with index γ, on

the curve C : z = z(t), t ∈ [a, b], if and only if the inequality (2.2) holds for all

t ∈ [a, b].

If we let f(z) ≡ z, then we have P = i ż
z ,

F = 1−
γ= ż

z

[(1− γ2)| żz |2 + γ2(= ż
z )2]

1
2

(2.4)

and (2.2) becomes

(1− F )= ż
z

+ F= z̈
ż
≥ 0, z = z(t) (2.5)

where F is given by (2.4), with | sinω| ≤ 1
γ .

Since the curvature of the curve C at the point z = z(t) is given by

k = k(t) =
1
|ż|
= z̈
ż
,

the condition (2.5) can be rewritten as

γ
(
= ż
z

)2

+
{[

(1− γ2)
∣∣∣ ż
z

∣∣∣2 + γ2
(
= ż
z

)2] 1
2 − γ= ż

z

}
|ż|k ≥ 0 (2.6)

and we deduce

Theorem 2.2. The curve C : z = z(t), t ∈ [a, b] has the regular refraction property

of index γ ≥ 0 if and only if the inequality (2.6) holds for all t ∈ [a, b].

If C is convex then k ≥ 0 and we deduce the following interesting result.

Corollary 2.3. If the smooth curve C is convex, then it has the regular refraction

property of any index γ ∈ [0, 1].
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If we let

∆ = (1− γ2)
∣∣∣ ż
z

∣∣∣2 + γ2
(
= ż
z

)2

,

then Theorem 2.2 can be rewritten as

Theorem 2.4. The curve C : z = z(t), t ∈ [a, b] has the regular refraction property

of index γ if and only if the following inequalities hold for all t ∈ [a, b]:

(i) ∆ ≤ 0;

(ii) γ
(
= ż

z

)2

+
[√

∆− γ= ż
z

]
= z̈

ż ≥ 0.

Let f be analytic and univalent in the closed unit disc U , with f(0) = 0 and

f ′(0) = 1. If C = Cr : reit, t ∈ [0, 2π], 0 < r ≤ 1, then we have

P = p(z) =
zf ′(z)
f(z)

.

and Theorem 2.1 becomes

Theorem 2.5. The function f has the regular refraction property of index γ on the

circle Cr if and only if

<
[
p(z) + F (z, γ)

zp′(z)
p(z)

]
≥ 0, for |z| = r, (2.7)

where

p(z) =
zf ′(z)
f(z)

(2.8)

F (z, γ) = 1− γ<p(z)
[(1− γ2)|p(z)|2 + γ2(<p(z))2] 1

2
(2.9)

and

(1− γ2)|p(z)|2 + γ2(<p(z))2 ≥ 0. (2.10)

Definition 2.6. We say that the normalized analytic and univalent function f in the

unit disc belongs to the class RP(γ), of functions with regular refraction property of

index γ iff

<J(f ; z, γ) ≥ 0, for all z ∈ U, (2.11)

J(f ; z, γ) = p(z) + F (z, γ)
zp′(z)
p(z)

, (2.12)

with p and F given by (2.8), and (2.9) respectively, with condition (2.10).
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Let S∗ and K be respectively the class of starlike and convex functions in the

unit disc.

Also, let M(α) be the class of α-convex functions in U .

It is easy to prove the following main result:

Theorem 2.7. If f ∈ RP(γ), 0 ≤ γ ≤ 1 then f ∈ S∗.

Moreover

K ⊂ RP(γ1) ⊂ RP(γ2) ⊂ S∗, for 0 < γ1 < γ2 < 1

and

K ⊂ RP(1− α) ⊂M(α), for 0 < α < 1.

We also have

RP(γ2) ⊂ RP(γ1) ⊂ S∗, for 1 < γ1 < γ2.

An interesting extremal problem suggested by Theorem 2.7 is the following:

Given the function f , find the largest interval [γ0, γ1], with γ0 ≤ 1 ≤ γ1, such

that f ∈ RP(γ), for all γ ∈ [γ0, γ1]. We shall call this interval as the regular refraction

interval of the function f .

We illustrate this last problem by the following.

Example 2.8. Let

f(z) = z exp
( zn

2n

)
, z ∈ U.

In this case we have

p(z) =
1
2
(2 + zn) and

zp′(z)
p(z)

=
nzn

2 + zn
.

If z = eit, then we have

cosnt = x− 1, with 0 ≤ x ≤ 2

and

|p(z)|2 =
1
4
(1 + 4x),<p(z) =

1
2
(1 + x),<zp

′(z)
p(z)

= n
2x− 1
1 + 4x

.

Hence

F (z, γ) = 1− γ(1 + x)√
E(x, γ)

,
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where

E(x, γ) = 1 + 2(2− γ2)x+ γ2x2.

Hence the inequality (2.7) becomes

1
2
(1 + x) + n

(
1− γ(1 + x)√

E(x, γ)

)2x− 1
1 + 4x

≤ 0, for 0 ≤ x ≤ 2. (2.13)

We remark that for γ ≤ 2 we have

E(x, γ) ≥ 0, for x ∈ [0, 2].

For x = 0 we have 2n−1
2n ≤ γ < 2, and for x = 2 we have γ < 1 + 9

2n .

From (2.13) we deduce

1
γ2

≥ 1
1 + 4x

{
x(2− x) +

[ 2n(2x+ x− 1)
4x2 + (4n+ 5)x+ 1− 2n

]2}
≡ Φn(x),

with 1
2 < x ≤ 2.

For n = 1 we have

max
x∈

[
1
2 ,2

]Φ1(x) = 0.25059...

and we deduce that the regular refraction interval of the function

f(z) = z exp
(z

2

)
is given by

[
1
2 , 1.9976 · · ·

]
.

For n = 2 we have

max
x∈

[
1
2 ,2

]Φ2(x) = 0.2934...

and we deduce that the regular refraction interval of the function

f(z) = z exp
(z2

4

)
is given by

[
3
4 , 1.9123 · · ·

]
.
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