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DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS

ION MARIAN OLARU

Abstract. In the paper Integral equations, periodicity and fixed points,

published in Fixed Point Theory, 9(2008), No 1, 47-65 the author T.A.

Burton considered the equation

x(t) = g(t) +

t∫
−∞

K(t, s, x(s))ds.

In this paper we shall study the data dependence for this integral equations.

1. Introduction

Let (PT , ‖ ·‖) denote the Banach space of continuous scalar T−periodic func-
tions with the supremum norm.

We consider the equation

x(t) = g(t) +

t∫
−∞

K(t, s, x(s))ds, t ∈ R (1.1)

under the conditions:

(C1) there exists T > 0 such that

g(t + T ) = g(t), K(t + T, s + T, u) = K(t, s, u)

for all t, s, u ∈ R;

(C2) for all x ∈ PT we have that
(·)∫
−∞

K((·), s, x(s))ds ∈ PT

Now we define the operator

A : PT → PT ,

A(x)(t) = g(t) +

t∫
−∞

K(t, s, x(s))ds.
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In [1], T.A. Burton was considered the following conditions

(C3) there exists a function B(t, s) with
t∫

−∞
B(t, s) defined such that

|K(t, s, u)−K(t, s, v)| ≤ B(t, s)|u− v|,

for all −∞ < s ≤ t < ∞, u, v ∈ R;

(C4) there exists 0 < α < 1 such that
t∫

−∞
B(t, s) ≤ α.

Under conditions (C1) − (C4) we have that the operator A has a unique fixed point
x?

A, and An(x) → x?
A for n →∞ and for all x ∈ PT , so the operator A is Picard(I.A.

Rus [3])
The purpose of this article is to establish a Gronwall type lemma correspond-

ing to the equation (1.1) and also data dependence theorems, comparison theorems
for the solutions of the equation (1.1). More results about nonlinear integral equations
we find in [2].

2. A Gronwall type inequalities

We consider the following integral inequalities:

x(t) ≤ g(t) +

t∫
−∞

K(t, s, x(s))ds, t ∈ R (2.1)

x(t) ≥ g(t) +

t∫
−∞

K(t, s, x(s))ds t ∈ R. (2.2)

Throughout this section we use the following

Lemma 2.1. I.A. Rus [5] Let (X, d) be an ordered metric space and A : X → X be
such that:

(i) the operator A is Picard, with the set of fixed points FA = {x?
A};

(ii) the operator A is monotone increasing.

Then

(a) x ≤ A(x) implies x ≤ x?
A;

(b) x ≥ A(x) implies x ≥ x?
A;

We have

Theorem 2.2. We suppose that:

(i) the conditions (C1)− (C4) hold;
(ii) the operator K(t, s, ·) is monotone increasing, for all −∞ < s ≤ t < ∞.
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Then

(a) the equation (1.1) has a unique solution x?;
(b) for all solutions x ∈ PT of the inequality (2.1) we have that x ≤ x?;
(c) for all solutions x ∈ PT of the inequality (2.2) we have that x ≥ x?,

Proof. (a) We consider the operator

A : PT → PT ,

A(x)(t) = g(t) +
∫ t

−∞
K(t, s, x(s))ds.

T.A Burton [1] proves that the operator A is Picard operator, FA = {x?}.
(b)+(c) From the condition (ii) we obtain that A is an increasing operator.

Then, by Lemma 2.1 we have the conclusions.

3. A comparison result

Now we shall give a comparison result for the solution of the equation (1.1).
For this study we need the following abstract result ([5]).

Lemma 3.1. Let (X, d,≤) be an ordered metric space and A,B,C : X → X be such
that:

(i) A ≤ B ≤ C

(ii) A,B, C are Picard operators, FA = {x?
A}, FB = {x?

B}, FC = {x?
C};

(iii) the operator B is increasing.

Then

x?
A ≤ x?

B ≤ x?
C .

We consider the equations

(4)i x(t) = gi(t) +

t∫
−∞

K(t, s, x(s))ds, t ∈ R, i = 1, 3,

We have

Theorem 3.2. We consider the equation (4)i. We suppose that:

(i) gi and Ki, i = 1, 3, satisfy the condition (i) in Theorem 2.2;
(ii) g1(t) ≤ g2(t) ≤ g3(t) and K1(t, s, ·) ≤ K2(t, s, ·) ≤ K3(t, s, ·) for all

−∞ < s ≤ t < ∞;
(iii) K2(t, s, ·) is monotone increasing for all −∞ < s ≤ t < ∞.

Then
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(a) the equations (4)i have a unique solution x?
i ∈ PT , i = 1, 3

(b) x?
1 ≤ x?

2 ≤ x?
3.

Proof. (a) We consider the operator

Ai : PT → PT ,

Ai(x)(t) = gi(t) +
∫ t

−∞
Ki(t, s, x(s))ds, i = 1, 3.

The condition (i) from Theorem 2.2 implies that the operators Ai are Picard
with FAi

= {x?
i }, i = 1, 3.

(b) From the condition (ii) we have that A1 ≤ A2 ≤ A3 and from (iii)
we obtain that A2 is an increasing operator. Then, from Lemma 2.1 we have the
conclusion.

4. Data dependence: Continuity

Now we consider the equations

x(t) = g1(t) +

t∫
−∞

K1(t, s, x(s))ds, t ∈ R (4.1)

x(t) = g2(t) +

t∫
−∞

K2(t, s, x(s))ds, t ∈ R. (4.2)

We have

Theorem 4.1. We suppose that

(1) g1, g2,K1,K2 satisfy the conditions (i) in Theorem 2.2;
(2) there exists η1 > such that

|g1(t)− g2(t)| ≤ η1,

for all t ∈ R;
(ii) there exists a function η2(t, s) and η3 > 0 such that

t∫
−∞

η2(t, s)ds ≤ η3,

|K1(t, s, u)−K2(t, s, u)| ≤ η2(t, s),

for all −∞ < s ≤ t < ∞, u ∈ R.

Then

(a) the equations (4.1), (4.2) have a unique solution x?
1 respectively x?

2;
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(b) ‖x?
1 − x?

2‖ ≤
η1+η3
1−α .

Proof. (a) We define the operators

Ai : PT → PT ,

Ai(x)(t) = gi(t) +

t∫
−∞

Ki(t, s, x(s))ds, i = 1, 2.

The condition (i) from Theorem 2.2 implies that the operators Ai are Picard with
FAi

= {x?
i }, i = 1, 2.

(b) Because

|A1(x)(t)−A2(x)(t)| ≤ |g1(t)− g2(t)|+
t∫

−∞

|K1(t, s, x(s))−K2(t, s, x(s))|ds ≤

≤ η1 +

t∫
−∞

η2(t, s)ds ≤ η1 + η3

for all x ∈ PT and t ∈ R, we obtain that

‖A1(x)−A2(x)‖ ≤ η1 + η3.

Now the proof follows from a well known abstract result( [3], [4]).

5. Smooth dependence on parameter

Next we consider the following integral equation

x(t) = g(t, λ) +

t∫
−∞

K(t, s, x(s), λ)ds, t ∈ R, λ ∈ J = [c, d] ⊂ R. (5.1)

Let (PT , ‖·‖) be the Banach space of continuous scalar T−periodic functions,
defined on R× J , with the supremum norm.

We assume that

(H1) g,K ∈ C1(R× J) and it verify the conditions (C1), (C2);
(H2) there exists a function B(t, s) such that

|∂K

∂u
(t, s, u, λ)| ≤ B(t, s),

for all −∞ < s ≤ t < ∞, u, v ∈ R, λ ∈ J ;

(H3)
t∫

−∞
B(t, s)ds is defined and

t∫
−∞

B(t, s)ds ≤ α < 1.
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We define the operator

B : PT → PT ,

B(x)(t, λ) = g(t, λ) +

t∫
−∞

K(t, s, x(s, λ), λ)ds.

It is clear that, in the conditions (H1)− (H3) the operator B is Picard oper-
ator. Let x?(·, λ) be the unique fixed point of the operator B. Then

x?(t, λ) = g(t, λ) +

t∫
−∞

K(t, s, x?(s, λ), λ)ds (5.2)

We suppose that there exists ∂x?

∂λ . Then from (5.2) we have that

∂x?

∂λ
(t, λ) =

∂g

∂λ
(t, λ) +

t∫
−∞

[
∂K

∂u
(t, s, x?(s, λ);λ)

∂x?(s, λ)
∂λ

+
∂K

∂λ
(t, s, x?(s, λ);λ)]ds

This relation suggest us to consider the following operator

C : PT × PT → PT ,

C(x, y)(t, λ) =
∂g

∂λ
(t, λ) +

t∫
−∞

[
∂K

∂u
(t, s, x(s, λ);λ)y(s, λ) +

∂K

∂λ
(t, s, x(s, λ);λ)]ds

In this way we have the triangular operator

A : PT × PT → PT × PT ,

A(x, y) = (B(x), C(x, y))

where B is a Picard operator and C(x, ·) : PT → PT is an α−contraction.
From the theorem of fiber contraction (see I.A. Rus [5],[6]) we have that the

operator A is Picard operator. So, the sequences

xn+1 = B(xn), n ∈ N

yn+1 = C(xn, yn), n ∈ N

converges uniformly to (x?, y?) ∈ FA, for all x0, y0 ∈ PT .

If we take x0 = 0, y0 = ∂x0
∂λ = 0 then y1 = ∂x1

∂λ and by induction we prove
that yn = ∂xn

∂λ , for all n ∈ N?.

Thus

xn → x?, uniform as by n →∞

164



DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS

∂xn

∂λ
→ y?, uniform as by n →∞

These imply that there exists ∂x?

∂λ and ∂x?

∂λ = y?

From the above considerations, we have the following result

Theorem 5.1. We consider the integral equation (5.1) in the hypothesis (H1)−(H3).
Then

(i) the equation (5.1) has a unique solution x?(t, ·) ∈ PT ;
(ii) x?(t, ·) ∈ C1(J), for all t ∈ R.

References

[1] T. A. Burton, Integral equations, periodicity and fixed points, Fixed Point Theory,

9(2008), no. 1, 47-65.

[2] Guo Dajun, V. Laskshmikantam, Liu Xinzhi, Nonlinear integral equations in abstract

spaces, Kluwer Academic Publishers, 1996, Boston-London.

[3] I. A. Rus, Generalized contractions, Seminar on Fixed Point Theory, Preprint 1983,

no.3, 1-130.
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