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CLOSEDNESS OF THE SOLUTION MAP FOR PARAMETRIC
VECTOR EQUILIBRIUM PROBLEMS

JÚLIA SALAMON

Abstract. The objective of this paper is to study the parametric vector

equilibrium problems governed by vector topologically pseudomonotone

maps. The main result gives sufficient conditions for closedness of the

solution map defined on the set of parameters.

1. Introduction

M. Bogdan and J. Kolumbán [5] gave sufficient conditions for closedness of

the solution map. They considered the parametric equilibrium problems governed

by topologically pseudomonotone maps depending on a parameter. In this paper we

generalize their result for parametric vector equilibrium problems.

Let (X, σ) be a Hausdorff topological space and let P (the set of parameters)

be another Hausdorff topological space. Let Z be a real topological vector space with

an ordering cone C, where C is a closed convex cone in Z with Int C 6= ∅ and C 6= Z.

We consider the following parametric vector equilibrium problem, in short

(V EP )p:

Find ap ∈ Dp such that

fp (ap, b) ∈ (− IntC)c
, ∀b ∈ Dp,

where Dp is a nonempty subset of X and fp : X ×X → Z is a given function.
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Denote by S (p) the set of the solutions for a fixed p. Suppose that S (p) 6= ∅,

for all p ∈ P . (For sufficient conditions for the existence of solutions see [6].)

The paper is organized as follows. In Section 2, we recall the notions of

the vector topological pseudomonotonicity and the Mosco convergence of the sets.

Section 3 is devoted to the closedness of the solution map for parametric vector

equilibrium problems. In the final section, we investigate the generalized Hadamard

well-posedness of parametric vector equilibrium problems.

2. Preliminaries

In this section, the notion of vector topologically pseudomonotone bifunctions

with values in Z is used. First the definition of the suprema and the infima of subsets

of Z are given. Following [1], for a subset A of Z the superior of A with respect to C

is defined by

SupA =
{
z ∈ Ā : A ∩ (z + IntC) = ∅

}
and the inferior of A with respect to C is defined by

Inf A =
{
z ∈ Ā : A ∩ (z − IntC) = ∅

}
.

Let (zi)i∈I be a net in Z. Let Ai = {zj : j ≥ i} for every i in the index set I.

The limit inferior of (zi) is given by

Liminf zi := Sup

(⋃
i∈I

Inf Ai

)
.

Similarly, the limit superior of (zi) is defined as

Limsup zi := Inf

(⋃
i∈I

SupAi

)
.

The next definition is a generalization of the vector topological pseudomono-

tonicity given by Chadli, Chiang and Huang in [6].

Definition 2.1. Let (X, σ) be a Hausdorff topological space, and let D be a nonempty

subset of X. A function f : D×D → Z is called vector topologically pseudomonotone

if for every b ∈ D, v ∈ IntC and for each net (ai)i∈I in D satisfying

ai
σ→ a ∈ D and Liminf f (ai, a) ∩ (− IntC) = ∅,
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there is i0 in the index set I such that

{f (aj , b) : j ≥ i} ⊂ f (a, b) + v − IntC

for all i ≥ i0.

Let us consider σ and τ two topologies on X. Suppose that τ is stronger than

σ on X.

For the parametric domains in (V EP )p we shall use the following type of

convergence, which is a slight generalization of Mosco’s convergence in [11].

Definition 2.2 ([5], Definition 2.2). Let Dp be subsets of X for all p ∈ P . The sets

Dp converge to Dp0 in the Mosco sense (Dp
M→ Dp0) as p → p0 if:

a) for every subnet (api)i∈I with api ∈ Dpi , pi → p0 and api

σ→ a imply

a ∈ Dp0 ;

b) for every a ∈ Dp0 , there exist ap ∈ Dp such that ap
τ→ a as p → p0.

3. Closedness of the solution map

This section is devoted to prove the closedness of the solution map for para-

metric vector equilibrium problems.

Theorem 3.1. Let X be a Hausdorff topological space with σ and τ two topologies,

where τ is stronger than σ. Let Dp be nonempty sets of X, and let p0 ∈ P be fixed.

Suppose that S (p) 6= ∅ for each p ∈ P and the following conditions hold:

i) Dp
M→ Dp0 ;

ii) For each net of elements (pi, api) ∈ GraphS, if pi → p0, api

σ→ a, bpi ∈

Dpi
, b ∈ Dp0 , and bpi

τ→ b there exists a subnet of (pi, api
)i∈I , denoted by

the same indexes, such that one of the following conditions applies

(C1)
(fpi

(api
, bpi

)− fp0 (api
, b))i∈I converge to an element

belonging to − IntC, when pi → p0

or

(C2)

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi (api , bpi)− fp0 (api , b))i∈I ∈ −C;
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iii) fp0 : X ×X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S (p) is closed at p0, i.e. for each net of elements

(pi, api
) ∈ GraphS, pi → p0 and api

σ→ a imply (p0, a) ∈ GraphS.

Proof . Let (pi, api)i∈I be a net of elements (pi, api) ∈ GraphS i.e.

fpi
(api

, b) ∈ (− IntC)c
, ∀b ∈ Dpi

(1)

with pi → p0 and api

σ→ a. By the Mosco convergence of the sets Dp we get a ∈

Dp0 . Moreover there exists a net (bpi
)i∈I , bpi

∈ Dpi
such that bpi

τ→ a. From the

assumption ii) we obtain that there exists a subnet of (pi, api)i∈I , denoted by the

same indexes, such that

(fpi
(api

, bpi
)− fp0 (api

, a))i∈I converge to an element

belonging to − IntC, when pi → p0

(2)

or

(fpi
(api

, bpi
)− fp0 (api

, a))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi
(api

, bpi
)− fp0 (api

, a))i∈I ∈ −C.

(3)

Since − IntC is an open cone, from (2) follows that there exists an index

j0 ∈ I such that

fpi
(api

, bpi
)− fp0 (api

, a) ∈ − IntC ⊂ −C, i ≥ j0. (4)

By replacing b with bpi
in (1) we get

fpi (api , bpi) ∈ (− IntC)c
. (5)

From (5), (3) and (4) we obtain that

fp0 (api
, a) ∈ (− IntC)c

, for i ≥ j0,

since (− IntC)c is closed, in both cases we have

Liminf fp0 (api
, a) ⊂ (− IntC)c for i ≥ j0.
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Now we can apply iii) and we obtain that for every b ∈ D and v ∈ IntC,

there exists j1 ∈ I such that

{fp0 (api , b) : i ≥ j} ⊂ fp0 (a, b) + v − IntC, ∀j ≥ j1. (6)

We have to prove that

fp0 (a, b) ∈ (− IntC)c
, ∀b ∈ Dp0 .

Assume the contrary, that there exists b ∈ Dp0 such that

fp0

(
a, b
)
∈ − IntC.

Let be fp0

(
a, b
)

= −v where v ∈ IntC. From (6) we obtain that there exists j1 ∈ I

such that {
fp0

(
api

, b
)

: i ≥ j
}
⊂ −v + v − IntC = − IntC, ∀j ≥ j1. (7)

Since b ∈ Dp0 from the Mosco convergence of the sets Dp, we have that there exists(
bpi

)
i∈I

⊂ Dpi
such that bpi

τ→ b. By using again ii), it follows that there exists a

subnet of (pi, api
)i∈I , denoted by the same indexes, such that

fpi

(
api

, bpi

)
− fp0

(
api

, b
)
∈ − IntC ⊂ −C, i ≥ j2, (8)

where we have used the same reasoning as before.

From (7) and (8) it follows

fpi

(
api , bpi

)
∈ − IntC, i ≥ sup {j1, j2} , (9)

but on other side (pi, api) ∈ GraphS, and

fpi

(
api , bpi

)
∈ (− IntC)c

which is a contradiction. Hence (p0, a) ∈ GraphS.

Remark 3.2. The assumption ii) of the Theorem 3.1 is weaker then the following

statement

ii′) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ→ a,

bpi ∈ Dpi , b ∈ Dp0 ,and bpi

τ→ b then

Liminf (fpi (api , bpi)− fp0 (api , b)) ∩ (− IntC) 6= ∅.
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Indeed, first we prove that ii
′
) ⇒ ii).

For simplicity, we introduce the following notation

upi = fpi (api , bpi)− fp0 (api , b) .

From ii′) we obtain that for every i0 ∈ I we have

Liminf upi ∩ (− IntC) 6= ∅ where i ≥ i0.

Wherefrom it follows that there exists a point u from the limit points of net (upi)i∈I

such that for every neighborhood U of u we have

U ∩ [Liminf upi ∩ (− IntC)] 6= ∅. (10)

There are two cases to be distinguished:

Case 1. u ∈ Liminf upi ∩ (− IntC). Since u is a limit point of (upi) there

exists a subnet
(
upj

)
converging to u. So we have that u ∈ − IntC then the condition

(C1) in assumption ii) holds.

Case 2. u /∈ Liminf upi
∩ (− IntC). In this case we must have that u ∈ −∂C.

From (10) it follows that for every neighborhood U of u there exists an upi
∈ − IntC ⊂

−C such that upi
∈ U . This leads to the condition (C2) of the assumption ii).

These two assumptions are not equivalent, because there exist nets which

satisfy only the assumption ii). For example, let the net (upi)i∈I be defined by

upi = (2, 4 + 1/pi) for i ∈ I, where pi →∞ and the cone C is given by

C =
{
(a, b) ∈ R2 : b ≥ |2a|

}
.

This net has only one limit inferior point in the (2, 4) which is located on the boundary

of the C cone. Hence the assumption ii) holds, but the assumption ii′) fails.

Remark 3.3. The Theorem 3.1 does not imply the scalar case. The only exception

represents the following condition:

For each net of elements (pi, api) ∈ GraphS, if pi → p0, api

σ→ a, bpi ∈ Dpi ,

b ∈ Dp0 , and bpi

τ→ b there exists a subnet of (pi, api)i∈I , denoted by the same indexes,
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such that

(C3)
(fpi (api , bpi)− fp0 (api , b))i∈I converge to 0 and

(fpi (api , bpi)− fp0 (api , b))i∈I /∈ −C.

The following example confirms this statement.

Example 3.4. Let P = N ∪ {∞}, p0 = ∞ (∞ means +∞ from real analysis),

where we consider the topology induced by the metric given by d(m,n) = |1/m− 1/n|,

d(n,∞) = d(∞, n) = 1/n, for m,n ∈ N, and d(∞,∞) = 0. Let X = [0, 1]

where σ, τ are the natural topology, Z = R2, Dp = [0, 1], p ∈ P , the real vector

functions fp : [0, 1] × [0, 1] → R2. The ordering cone C is the third quadrant i.e.

C =
{
(a, b) ∈ R2 : a ≤ 0, b ≤ 0

}
.

Let fn(a, b) = (a− b− 1/n,−2a + 1), n ∈ N and

f∞(a, b) =

 (a− b,−a + 1) if a > 0

(b, 1) if a = 0
.

The f∞ is vector topologically pseudomonotone, and the condition (C3) holds.

We have (n, 1/n) ∈ GraphS for each n ∈ N, S (∞) = {1} so 0 /∈ S(∞). Hence S is

not closed at ∞.

M. Bogdan and J. Kolumbán [5] showed that the topological pseudomono-

tonicity and the assumption ii) are essential in scalar case.

If the (V EP )p is defined on constant domains, Dp = X for all p ∈ P , we can

omit the Mosco convergence. In this case condition ii) can be weakened to:

(C) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ→ a, and

b ∈ X, there exists a subnet of (pi, api
)i∈I , denoted by the same indexes, such that

(fpi (api , b)− fp0 (api , b))i∈I converge to an element

belonging to − IntC, when pi → p0

or

(fpi
(api

, b)− fp0 (api
, b))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi
(api

, b)− fp0 (api
, b))i∈I ∈ −C.
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Theorem 3.5. Let (X, σ) be a Hausdorff topological space and let p0 ∈ P be fixed.

Suppose that S(p) 6= ∅, for each p ∈ P , and

i) fp satisfies condition (C) at p0;

ii) fp0 : X ×X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S(p) is closed at p0.

Proof . The proof is similar to the proof of the Theorem 3.1.

4. Hadamard well-posedness

Let us recall some classical definitions from set-valued analysis. Let X, Y

be topological spaces. The map T : X → 2Y is said to be upper semi-continuous

at u0 ∈ domT := {u ∈ X|T (u) 6= ∅} if for each neighborhood V of T (u0), there

exists a neighborhood U of u0 such that T (U) ⊂ V . The map T is considered to be

closed at u ∈ domT if for each net (ui)i∈I in domT , ui → u and each net (yi)i∈I ,

yi ∈ T (ui), with yi → y one has y ∈ T (u). The map T is said to be closed if its

graph GraphT = {(u, y) ∈ X × Y |y ∈ T (u)} is closed, namely if (ui, yi) ∈ GraphT ,

(ui, yi) → (u, y) then (u, y) ∈ GraphT .

Closedness and upper semi-continuity of a multifunction are closely related.

Proposition 4.1 ([3] Proposition 1.4.8, 1.4.9). i) If T : Y → 2X has closed

values and is upper semi-continuous then T is closed;

ii) If X is compact and T is closed at y ∈ Y then T is upper semi-continuous

at y ∈ Y .

Now we recall the notion of generalized Hadamard well-posedness.

Definition 4.2. The problem (V EP )p is said to be Hadamard well-posed (briefly H-

wp) at p0 ∈ P if S(p0) = {ap0} and for any ap ∈ S(p) one has ap
σ→ ap0 , as p → p0.

The problem (V EP )p is said to be generalized Hadamard well-posed (briefly gH-wp)

at p0 ∈ P if S(p0) 6= ∅ and for any ap ∈ S(p), if p → p0, (ap) must have a subsequence

σ−converging to an element of S(p0).

With the help of the next result we are able to establish the relationship

between upper semi-continuity and Hadamard well-posedness.
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Proposition 4.3 ([13] Theorem 2.2). Let X and Y be Hausdorff topological spaces

and T : Y → 2X be a set valued map. If T is upper semi-continuous at y ∈ Y and

T (y) is compact, then T is gH-wp at y. If more, T (y) = {x∗}, then T is H-wp at y.

In the following we prove that the solution map of (V EP )p has closed value

at p0.

Proposition 4.4. If Dp0 is closed with respect to the σ topology and fp0 : X×X → Z

is vector topologically pseudomonotone, then S (p0) is closed with respect to the σ

topology.

Proof . Let ai ∈ S (p0), with ai
σ→ a. Since Dp0 is closed with respect to the σ

topology, we have a ∈ Dp0 . From ai ∈ S (p0) it follows that

fp0 (ai, a) ∈ (− IntC)c
, ∀i ∈ I,

since (− IntC)c is closed, we get

Liminf fp0 (ai, a) ⊂ (− IntC)c
.

By using the vector topological pseudomonotonicity we obtain that for every b ∈ D

and v ∈ IntC there is j1 in the index set I such that

{fp0 (ai, b) : i ≥ j} ⊂ fp0 (a, b) + v − IntC, ∀j ≥ j1. (11)

We have to prove that a ∈ S (p0), i.e.

fp0 (a, b) ∈ (− IntC)c
, ∀b ∈ Dp0 .

Assume the contrary, that there exists b ∈ Dp0 such that

fp0

(
a, b
)
∈ − IntC.

Let fp0

(
a, b
)

= −v where v ∈ IntC. From (11) we obtain that{
fp0

(
ai, b

)
: i ≥ j

}
⊂ −v + v − IntC = − IntC, ∀j ≥ j1

which is a contradiction to ai ∈ S (p0). Thus a ∈ S (p0).

Now we can formulate the following result.
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Corollary 4.5. Let (X, σ) be a compact Hausdorff topological space and P be a

Hausdorff topological space. Let Dp be nonempty sets of X, and Dp0 be a closed

subset of X. Suppose that S (p) 6= ∅ for each p ∈ P and the following conditions hold:

i) Dp
M→ Dp0 ;

ii) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ→ a, bpi
∈

Dpi
, b ∈ Dp0 , and bpi

τ→ b there exists a subnet of (pi, api
)i∈I , denoted by

the same indexes, such that

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I converge to an element

belonging to − IntC, when pi → p0

or

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I ∈ −C;

iii) fp0 : X ×X → Z is vector topologically pseudomonotone.

Then (V EP )p is generalized Hadamard well-posed at p0. Furthermore, if

S(p0) = {ap0} (a singleton), then (V EP )p is Hadamard well-posed at p0.

Proof . By Theorem 3.1 it follows that the solution map S is closed at p0. We may

use Proposition 4.1 ii) to state that S is upper semi-continuous at p0. The set S(p0) is

closed by Proposition 4.4, hence it is compact. The conclusion follows by Proposition

4.3.

We can obtain similar result in the case of constant domains.

Corollary 4.6. Let (X, σ) be a compact Hausdorff topological space. Let p0 ∈ P be

fixed and S(p) 6= ∅, for each p ∈ P . If the hypotheses of Theorem 3.5 are satisfied then

(V EP )p is generalized Hadamard well-posed at p0. Furthermore, if S(p0) = {ap0} (a

singleton), then (V EP )p is Hadamard well-posed at p0.
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