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A NOTE ON A GEOMETRIC CONSTRUCTION OF LARGE
CAYLEY GRAPHS OF GIVEN DEGREE AND DIAMETER

GYÖRGY KISS, ISTVÁN KOVÁCS, KLAVDIJA KUTNAR, JÁNOS RUFF, AND PRIMOŽ

ŠPARL

Abstract. An infinite series and some sporadic examples of large Cayley

graphs with given degree and diameter are constructed. The graphs arise

from arcs, caps and other objects of finite projective spaces.

A simple finite graph Γ is a (∆, D)-graph if it has maximum degree ∆, and

diameter at most D. The (∆, D)-problem (or degree/diameter problem) is to deter-

mine the largest possible number of vertices that Γ can have. Denoted this number

by n(∆, D), the well-known Moore bound states that n(∆, D) ≤ ∆(∆−1)D−2
∆−2 . This is

known to be attained only if either D = 1 and the graph is K∆+1, or D = 2 and

∆ = 1, 2, 3, 7 and perhaps 57. If in addition Γ is required to be vertex-transitive, then

the only known general lower bound is given as

n(∆, 2) ≥
⌊∆ + 2

2

⌋
·
⌈∆ + 2

2

⌉
. (1)

This is obtained by choosing Γ to be the Cayley graph Cay(Za × Zb, S), where a =

b∆+2
2 c, b = d∆+2

2 e, and S = { (x, 0), (0, y) | x ∈ Za\{0}, y ∈ Zb\{0} }. If ∆ = kD+m,

where k, m are integers and 0 ≤ m < D, then a straightforward generalization of this

construction results in a Cayley (∆, D)-graph of order⌊∆ + D

D

⌋D−m

·
⌈∆ + D

D

⌉m

. (2)
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Throughout this note we will refer these graphs as GCCG-graphs (General Construc-

tion from Cyclic Groups). For special values of the parameters, (1) and (2) have been

improved using various constructions. For more on the topic, we refer to [1, 8].

In this note we restrict our attention to the class of linear Cayley graphs. We

present some constructions where the resulting graphs improve the lower bounds (1)

and (2). For small number of vertices these are also compared to the known largest

vertex transitive graphs having the same degree and diameter.

Let V denote the n-dimensional vector space over the finite field Fq of q

elements, where q = pe for a prime p. For S ⊆ V such that 0 /∈ S, and S = −S :=

{−x | x ∈ S}, the Cayley graph Cay(V, S) is the graph having vertex-set V , and edges

{x, x + s}, x ∈ V , s ∈ S. To S we also refer as the connection set of the graph. A

Cayley graph Cay(V, S) is said to be linear, [6, pp. 243] if S = αS := {αx | x ∈ S}

for all nonzero scalars α ∈ Fq. In this case S ∪ {0} is a union of 1-dimensional

subspaces, and therefore, it can also be regarded as a point set in the projective space

PG(n−1, q). Conversely, any point set P in PG(n−1, q) gives rise to a linear Cayley

graph, namely the one having connection set {x ∈ V \ {0} | 〈x〉 ∈ P}. We denote

this graph by Γ(P). Given an arbitrary point set P in PG(n, q), 〈P〉 denotes the

projective subspace generated by the points in P, and
(P

k

)
(k ∈ N) is the set of all

subsets of P having cardinality k. The degree and diameter of linear Cayley graphs

are given in the next proposition.

Proposition 1. Let P be a set of k points in PG(n, q) with 〈P〉 = PG(n, q). Then

Γ(P) has qn+1 vertices, with degree k(q − 1), and with diameter

D = min
{

d | ∪X∈(Pd)〈X 〉 = PG(n, q)
}
. (3)

Proof. Let Γ = Γ(P). It is immediate from its definition that Γ has qn+1 vertices

and that its degree is equal to k(q − 1). Now let V denote the (n + 1)-dimensional

vector space over Fq. Being a Cayley graph, Γ is automatically vertex-transitive, and

so its diameter is the maximal distance δΓ(0, x) where 0 ∈ V , and x runs over V . By

δΓ we denote the usual distance function of Γ.
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Let x ∈ V \ {0}, and let P = 〈x〉 be the corresponding point in PG(n, q). It

can be seen that δΓ(0, x) = k where k is the minimal number of independent points

P1, . . . , Pk ∈ P such that P ∈ 〈P1, . . . , Pk〉. Now, (3) shows that δΓ(0, x) ≤ D for

every x ∈ V , in particular, the diameter of Γ is at most D.

On the other hand, by (3), there exists a Q ∈ PG(n, q) for which Q /∈

〈P1, . . . , PD−1〉 for any P1, . . . , PD−1 ∈ P. Thus if y is an element of V with 〈y〉 = Q,

then δΓ(0, y) ≥ D. Therefore, the diameter of Γ cannot be less than D, which

completes the proof. �

Once the number of vertices and the diameter for Γ(P) are fixed to be qn+1

and D, respectively, our task becomes to search for the smallest possible point set P

for which

∪X∈(PD)〈X 〉 = PG(n, q).

A point set having this property is called a (D-1)-saturating set.

The constructions

If D = 2, then a 1-saturating set P is a set of points of PG(n, q) such that

the union of lines joining pairs of points of P covers the whole space. Assume that

n = 2. If P contains k points, then the graph has degree k(q − 1) and the number

of vertices is q3. Hence this is better than the general lower bound (1) if and only if

q3 > (k(q − 1) + 2)2/4, which is equivalent to

2
√

q +
2

√
q + 1

> k. (4)

There are two known general constructions for 1-saturating sets in the plane: complete

arcs and double blocking sets of Baer subplanes.

If q is a square, and Π√q is a Baer subplane of PG(2, q), of order
√

q, then each

point of PG(2, q)\Π√q is incident with exactly one line of Π√q. A double blocking set

of a plane meets each line of the plane in at least two points. Hence a double blocking

set of Π√q is a 1-saturating set of PG(2, q). The cardinality of a double blocking set
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of Π√q is at least 2(
√

q + 4
√

q + 1). This is greater than the bound given in (4), hence

we cannot construct good graphs from these sets.

A complete k-arc K is a set of k points such that no three of them are

collinear, and there is no (k + 1)-arc containing K. Thus K is a 1-saturating set,

because if a point P would not be covered by the secants of K, then K ∪ {P} would

be a (k + 1)-arc. The cardinality of the smallest complete arc in PG(2, q) is denoted

by t2(2, q). For the known values of t2(2, q) we refer to [3]. The general lower bounds

are t2(2, q) >
√

2q + 1 for arbitrary q and t2(2, q) >
√

3q + 1/2 for q = pi, i = 1, 2, 3.

But unfortunately the known complete arcs have bigger cardinality. The inequality

t2(2, q) < 2
√

q +
2

√
q + 1

is satisfied only for q = 8, 9, 11 and 13. Table 1 gives the corresponding values of

t2(2, q) and the parameters of the graphs arising from these arcs.

q t2(2, q) D ∆ number of
⌊

∆+2
2

⌋
·
⌈

∆+2
2

⌉
.

vertices of Γ

8 6 2 42 512 484

9 6 2 48 729 625

11 7 2 70 1331 1296

13 8 2 96 2197 2116

Table 1

Besides complete arcs and double blocking sets of Baer subplanes another

class of small 1-saturating sets in PG(2, p) was examined by computer. These point

sets are contained in 3 concurrent lines. For small prime orders p = 11, 13, 17, 19, using

a simple back-track algorithm we found 1-saturating sets of this type with cardinality

10, 11, 13 and 14, respectively. The corresponding graphs do not improve the bound

in (1).

Now let n > 2. Then a set of k points such that no three of them are collinear

is called k-cap. A k-cap is complete, if it is not contained in any (k + 1)-cap. Hence

80



A NOTE ON A GEOMETRIC CONSTRUCTION OF LARGE CAYLEY GRAPHS

complete caps in PG(n, q) are 1-saturating sets. For the sizes of the known complete

caps we refer to [7]. There is one infinite series which gives better graphs than the

GCCG-graphs. Due to Davydov and Drozhzhina-Labinskaya [5], for n = 2m− 1 > 7

there is a complete (27 · 2m−4 − 1)-cap in PG(n, 2). This gives a graph of degree

27 · 2m−4 − 1 and of order 22m. It has much more vertices than the corresponding

GCCG-graph, because

22m = 1024 · 22m−10 > 729 · 22m−10 + 27 · 2m−5 =
⌊27 · 2m−4 + 1

2

⌋
·
⌈27 · 2m−4 + 1

2

⌉
.

Hence we proved the following theorem.

Theorem 1. Let ∆ = 27 · 2m−4 − 1 and m > 7. Then

n(∆, 2) ≥ 256
729

(∆ + 1)2.

There are sporadic examples, too. For n = 3 and q = 2 there is a complete

5-cap in PG(3, 2). The corresponding graph has degree ∆ = 5 and the number of

vertices is n = 16. The best known graph of degree 5 and diameter 2 has 24 vertices,

and the best known Cayley graph has 18 vertices [2], so in this case there are bigger

graphs. For q = 3, 4 and 5 the smallest complete caps in PG(3, q) have 2(q+1) points.

The corresponding graphs have the same parameters as the GCCG-graphs.

For n = 4 and q = 2, 3, 4 there are complete caps in PG(4, q) with cardinalities

9, 11 and 20, respectively. For n = 5 and q = 2, 3 there are complete caps in PG(5, q)

with cardinalities 13 and 22. The corresponding graphs have more vertices than the

previously known examples. Table 2 gives the parameters of the graphs arising from

these caps.
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projective size of the D ∆ number of
⌊

∆+2
2

⌋
·
⌈

∆+2
2

⌉
.

space complete cap vertices of Γ

PG(4, 2) 9 2 9 32 30

PG(4, 3) 11 2 22 243 144

PG(4, 4) 20 2 60 1024 961

PG(5, 2) 13 2 13 64 56

PG(5, 3) 22 2 44 729 529

Table 2

In PG(3, q), q > 3, the smallest known 1-saturating set has 2q + 1 points [4].

Let π be a plane, Ω be an oval in π, P be a point of Ω, for q even let N ∈ π be the

nucleus of Ω, for q odd let N ∈ π be a point such that the line NP is the tangent to

Ω at P, and finally let ` be a line such that `∩π = {P}. Then it is easy to check that

(Ω ∪ ` ∪ {N}) \ {P} is a 1-saturating set in PG(3, q). The corresponding graph has

degree ∆ = 2q2 − q− 1, and the number of its vertices is q4 > (∆ +
√

∆/2 + 5/4)2/4.

Hence we proved the following theorem.

Theorem 2. Let q > 3 be a prime power and let ∆ = 2q2 − q − 1. Then

n(∆, 2) >
1
4

(
∆ +

√
∆
2

+
5
4

)2

.

Let `1 and `2 be two skew lines in PG(3, q). If P is any point not on `1 ∪ `2,

then the plane generated by P and `1 meets `2 in a unique point T2, and the line

PT2 meets `1 in a unique point T1. Hence the line T1T2 contains P, so the set of

points of `1∪ `2 is a 1-saturating set in PG(3, q). The corresponding graph has degree

∆ = 2(q2 − 1), and the number of its vertices is q4 =
(
(∆ + 2)/2

)2
. Hence this

construction gives graphs having the same parameters as the GCCG-graphs.

A straightforward generalization of the skew line construction is the following.

Let `1, `2, . . . , `m be a set of m lines whose union spans PG(2m− 1, q). Then the set

of points of ∪m
i=1`i is an (m − 1)-saturating set and the corresponding graph has

parameters D = m, ∆ = 2m(q2 − 1), and the number of its vertices is q2m. These

parameters are the same as the parameters of the GCCG-graphs.
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Another class of examples for (D−1)-saturating sets in PG(D, q) is the class

of complete arcs. These objects are generalizations of the planar arcs. A point set

K is a complete k-arc in PG(D, q) if no D points of K lie in a hyperplane, and there

is no (k + 1)-arc containing K. The corresponding graph has degree k(q − 1) and the

number of vertices is qD+1. Hence this is better than the known general lower bound

if and only if

qD+1 >

(
k(q − 1) + D

D

)D

, that is k <
D(q D

√
q − 1)

q − 1
. (5)

The typical examples for complete arcs are the normal rational curves, and almost

all of the known complete arcs are normal rational curves, or subsets of these curves.

There is only one known complete k-arc which satisfies (5). This is a normal rational

curve in PG(4, 3). The corresponding graph has degree ∆ = 15, diameter D = 3 and

the number of its vertices is 256.
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Department of Geometry, Eötvös Loránd University

1117 Budapest, Pázmány s 1/c, Hungary
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