STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LIV, Number 2, June 2009

ON SUBCLASSES OF PRESTARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

SANTOSH B. JOSHI

Abstract. The present paper is aim at defining new subclasses of prestarlike functions with negative coefficients in unit disc U and study there basic properties such as coefficient estimates, closure properties. Further distortion theorem involving generalized fractional calculus operator for functions f(z) belonging to these subclasses are also established.

1. Introduction

Let A denote the class of analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

in the unit disc $U = \{z : |z| < 1\}$ and let S denote the subclass of A, consisting functions of the type (1.1) which are normalized and univalent in U. A function $f \in S$, is said to be starlike of order $\mu(0 \le \mu < 1)$ in U if and only if

$$Re\left(\frac{zf'(z)}{f(z)}\right) \ge \mu.$$
 (1.2)

We denote by $S^*(\mu)$, the class of all functions in S, which are starlike of order μ in U.

It is well-known that

$$S^*(\mu) \subseteq S^*(0) \equiv S^*.$$

The class $S^*(\mu)$ was first introduced by Robertson [7] and further it was rather extensively studied by Schild [8], MacGregor [2].

Received by the editors: 05.01.2009.

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Prestarlike function, distortion theorem, closure properties, extremal function, fractional calculus.

Also

$$S_{\mu}(z) = \frac{z}{(1-z)^{2(1-\mu)}}$$
(1.3)

is the familiar extremal function for class $S^*(\mu)$. Setting

$$C(\mu, n) = \frac{\prod_{k=2}^{n} (k - 2\mu)}{(n - 1)!}, n \in \mathbb{N} \setminus \{1\}, \mathbb{N} = \{1, 2, 3, ...\}.$$
(1.4)

The function $S_{\mu}(z)$ can be written in the form

$$S_{\mu}(z) = z + \sum_{n=2}^{\infty} C(\mu, n) \ z^{n}.$$
 (1.5)

We note that $C(\mu, n)$ is decreasing function in μ and that

$$\lim_{n \to \infty} C(\mu, n) = \begin{cases} \infty, & \mu < 1/2 \\ 1, & \mu = 1 \\ 0, & \mu > 1. \end{cases}$$
(1.6)

We say that $f \in S$, is in the class $S^*(\alpha, \beta, \gamma)$ if and only if it satisfies the following condition

$$\left| \frac{\frac{zf'(z)}{f(z)} - 1}{\gamma \frac{zf'(z)}{f(z)} + 1 - (1 + \gamma)\alpha} \right| < \beta,$$
(1.7)

where $0 \le \alpha < 1, 0 < \beta \le 1, 0 \le \gamma \le 1$.

Furthermore, a function f is said to be in the class $K(\alpha,\beta,\gamma)$ if and only if

$$zf'(z) \in S^*(\alpha, \beta, \gamma).$$

Let f(z) be given by (1.1) and g(z) be given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$
 (1.8)

then the Hadamard product (or convolution) of (1.1) and (1.8) is given by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$
 (1.9)

ON SUBCLASSES OF PRESTARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

Let $R_{\mu}(\alpha, \beta, \gamma)$ be the subclass of A consisting functions f(z) such that

$$\left| \frac{\frac{zh'(z)}{h(z)} - 1}{\gamma \frac{zh'(z)}{h(z)} + 1 - (1 + \gamma)\alpha} \right| < \beta$$
(1.10)

where,

$$h(z) = (f * S_{\mu}(z)), 0 \le \mu < 1.$$
(1.11)

Also, let $C_{\mu}(\alpha, \beta, \gamma)$ be the subclass of A consisting functions f(z), which satisfy the condition

$$zf'(z) \in R_{\mu}(\alpha, \beta, \gamma).$$

We note that $R_{\mu}(\alpha, 1, 1) = R_{\mu}(\alpha)$ is the class functions introduced by Sheil-Small *et al* [9]and such type of classes were studied by Ahuja and Silverman[1]. Finally, let *T* denote the subclass of *S* consisting of functions of the form

 ∞

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, a_n \ge 0.$$
(1.12)

We denote by $T^*(\alpha, \beta, \gamma)$, $C^*(\alpha, \beta, \gamma)$, $R_{\mu}[\alpha, \beta, \gamma]$ and $C_{\mu}[\alpha, \beta, \gamma]$ the classes obtained by taking the intersection of the classes $S^*(\alpha, \beta, \gamma)$, $K(\alpha, \beta, \gamma)$, $R_{\mu}(\alpha, \beta, \gamma)$ and $C_{\mu}(\alpha, \beta, \gamma)$ with the class T. In the present paper we aim at finding various interesting properties and characterization of aforementioned general classes $R_{\mu}[\alpha, \beta, \gamma]$ and $C_{\mu}[\alpha, \beta, \gamma]$. Further we note that such classes were studied by Owa and Uralegaddi [6], Silverman and Silvia [10] and Owa and Ahuja [4].

2. Basic Characterization

Theorem 1. A function f(z) defined by (1.12) is in the class $R_{\mu}[\alpha, \beta, \gamma]$ if and only if

$$\sum_{n=2}^{\infty} C(\mu, n) \left\{ (n-1) + \beta [\gamma n + 1 - (1+\gamma)\alpha] \right\} a_n \le \beta (1+\gamma)(1-\alpha).$$
 (2.1)

The result (2.1) is sharp and is given by

$$f(z) = z - \frac{\beta(1+\gamma)(1-\alpha)}{C(\mu,n)\{(n-1) + \beta[\gamma n + 1 - (1+\gamma)\alpha]\}} z^n, n \in \mathbb{N} \setminus \{1\}.$$
 (2.2)

Proof. The proof of Theorem 1 is straightforward and hence details are omitted. \Box **Theorem 2.** Let $f(z) \in T$, then f(z) is in the class $C_{\mu}[\alpha, \beta, \gamma]$ if and only if

$$\sum_{n=2}^{\infty} C(\mu, n) n \left\{ (n-1) + \beta [\gamma n + 1 - (1+\gamma)\alpha] \right\} a_n \le \beta (1+\gamma)(1-\alpha).$$
 (2.3)

The result (2.3) is sharp for the function f(z) given by

$$f(z) = z - \frac{\beta(1+\gamma)(1-\alpha)}{C(\mu,n)n\{(n-1)+\beta[\gamma n+1-(1+\gamma)\alpha]\}} z^n, n \in \mathbb{N} \setminus \{1\}.$$
 (2.4)

Proof. Since $f(z) \in C_{\mu}[\alpha, \beta, \gamma]$ if and only if $zf'(z) \in R_{\mu}[\alpha, \beta, \gamma]$, we have Theorem 2, by replacing a_n by na_n in Theorem 1.

Corollary 1. Let $f(z) \in T$, be in the class $R_{\mu}[\alpha, \beta, \gamma]$ then

$$a_n \le \frac{\beta(1+\gamma)(1-\alpha)}{C(\mu,n)\left\{(n-1) + \beta[\gamma n + 1 - (1+\gamma)\alpha]\right\}}, n \in \mathbb{N} \setminus \{1\}.$$

$$(2.5)$$

Equality holds true for the function f(z) given by (2.2).

Corollary 2. Let $f(z) \in T$, be in the class $C_{\mu}[\alpha, \beta, \gamma]$ then

$$a_n \le \frac{\beta(1+\gamma)(1-\alpha)}{C(\mu,n)n\left\{(n-1)+\beta[\gamma n+1-(1+\gamma)\alpha]\right\}}, n \in \mathbb{N} \setminus \{1\}.$$

$$(2.6)$$

Equality in (2.6) holds true for the function f(z) given by (2.4).

3. Closure Properties

Theorem 3. The class $R_{\mu}[\alpha, \beta, \gamma]$ is closed under convex linear combination.

Proof. Let, each of the functions $f_1(z)$ and $f_2(z)$ be given by

$$f_j(z) = z - \sum_{n=2}^{\infty} a_{n,j} z^n, a_{n,j} \ge 0, j = 1, 2$$
(3.1)

be in the class $R_{\mu}[\alpha, \beta, \gamma]$. It is sufficient to show that the function h(z) defined by

$$h(z) = \lambda f_1(z) + (1 - \lambda) f_2(z), 0 \le \lambda \le 1$$
(3.2)

ON SUBCLASSES OF PRESTARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

is also in the class $R_{\mu}[\alpha, \beta, \gamma]$. Since, for $0 \leq \lambda \leq 1$,

$$h(z) = z - \sum_{n=2}^{\infty} [\lambda a_{n,1} + (1-\lambda)a_{n,2}]z^n$$
(3.3)

by using Theorem 1,we have

$$\sum_{n=2}^{\infty} C(\mu, n) \left\{ (n-1) + \beta [\gamma n + 1 - (1+\gamma)\alpha] \right\} \left[\lambda a_{n,1} + (1-\lambda)a_{n,2} \right] \le \beta (1+\gamma)(1-\alpha)$$
(3.4)

which proves that $h(z)\in R_{\mu}[\alpha,\beta,\gamma]$.

Similarly we have

Theorem 4. The class $C_{\mu}[\alpha, \beta, \gamma]$ is closed under convex linear combination.

Theorem 5. Let,

$$f_1(z) = z \tag{3.5}$$

and,

$$f_n(z) = z - \frac{\beta(1-\alpha)(1+\gamma)}{C(\mu,n)\left\{(n-1) + \beta[\gamma n + 1 - (1+\gamma)\alpha]\right\}} z^n.$$
 (3.6)

Then f(z) is in the class $R_{\mu}[\alpha,\beta,\gamma]$ if and only if it can be expressed as

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) \tag{3.7}$$

where, $\lambda_n \geq 0$ and $\sum_{n=1}^{\infty} \lambda_n = 1$.

Proof. Let,

$$f(z) = \sum_{n=2}^{\infty} \lambda_n f_n(z)$$

= $z - \sum_{n=2}^{\infty} \frac{\beta(1-\alpha)(1+\gamma)}{C(\mu,n) \{(n-1) + \beta[\gamma n + 1 - (1+\gamma)\alpha]\}} \lambda_n z^n.$ (3.8)

Then it follows that

$$\sum_{n=2}^{\infty} \frac{\beta(1-\alpha)(1+\gamma)}{C(\mu,n)\left\{(n-1)+\beta[\gamma n+1-(1+\gamma)\alpha]\right\}} \lambda_n \frac{C(\mu,n)\left\{(n-1)+\beta[\gamma n+1-(1+\gamma)\alpha]\right\}}{\beta(1-\alpha)(1+\gamma)}$$

$$=\sum_{n=2}^{\infty}\lambda_n = 1 - \lambda_1 < 1.$$
(3.9)

Therefore by Theorem 1, $f(z)\in R_{\mu}[\alpha,\beta,\gamma]$.

Conversely, assume that the function f(z) defined by (1.12) belongs to the class $R_{\mu}[\alpha, \beta, \gamma]$, and then we have

$$a_n \le \frac{\beta(1+\gamma)(1-\alpha)}{C(\mu,n)\left\{(n-1) + \beta[\gamma n + 1 - (1+\gamma)\alpha]\right\}}, n \in \mathbb{N} \setminus \{1\}.$$
(3.10)

Setting

$$\lambda_n = a_n \frac{C(\mu, n) \left\{ (n-1) + \beta [\gamma n + 1 - (1+\gamma)\alpha \right\}}{\beta (1-\alpha)(1+\gamma)}, n \in \mathbb{N} \setminus \{1\},$$
(3.11)

and

$$\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n, \qquad (3.12)$$

we see that f(z) can be expressed in the form (3.7). This completes the proof of Theorem 5.

In the same manner we can prove, $\hfill \square$

Theorem 6. Let,

$$f_1(z) = z \tag{3.13}$$

and

$$f_n(z) = z - \frac{\beta(1-\alpha)(1+\gamma)}{C(\mu,n)n\left\{(n-1) + \beta[\gamma n + 1 - (1+\gamma)\alpha]\right\}} z^n, n \in \mathbb{N} \setminus \{1\}.$$
(3.14)

Then f(z) is in the class $C_{\mu}[\alpha, \beta, \gamma]$ if and only it can be expressed as

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) \tag{3.15}$$

where, $\lambda_n \ge 0$ and $\sum_{n=1}^{\infty} \lambda_n = 1$.

4. Generalized Fractional Integral Operator

Various operators of fractional calculus, that is fractional derivative operator, fractional integral operator have been studied in the literature rather extensively for *e.g.* [3, 5, 11, 12]. In the present section we shall make use of generalized fractional integral operator $I_{0,z}^{\lambda,\delta,\eta}$ given by Srivastava *et al* [13]. 70 **Definition.** For real numbers $\lambda > 0, \delta$ and η the generalized fractional integral operator $I_{0,z}^{\lambda,\delta,\eta}$ is defined as

$$I_{0,z}^{\lambda,\delta,\eta}f(z) = \frac{z^{-\lambda-\delta}}{\Gamma(\lambda)} \int_0^z (z-t)^{\lambda-1} {}_2F_1(\lambda+\delta,-\eta,1-t/z)f(t)dt$$
(4.1)

where f(z) is an analytic function in a simply connected region of the z-plane containing origin with order

$$f(z) = 0(|z|)^{\varepsilon}, (z \to 0, \varepsilon > \max[0, \delta - \eta] - 1)$$

$$(4.2)$$

$${}_{2}F_{1}(a,b,c;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n}$$
(4.3)

and $(\nu)_n$ is the Pochhammer symbol defined by

$$(\nu)_n = \frac{\Gamma(\nu+n)}{\Gamma(\nu)} = \begin{cases} 1 \\ \nu(\nu+1)...(\nu+n+1), \nu \in \mathbb{N} \end{cases}$$
(4.4)

an the multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log(z-t)$ to be real when (z-t) > 0.

In order to prove the results for generalized fractional integral operator $I_{0,z}^{\lambda,\delta,\eta}$, we recall here the following lemma due to Srivastava *et al* [13].

Lemma 1 (Srivastava *et al* [13]). If $\lambda > 0$ and $k > \delta - \eta - 1$ then

$$I_{0,z}^{\lambda,\delta,\eta} z^k = \frac{\Gamma(k+1)\Gamma(k-\delta+\eta+1)}{\Gamma(k-\delta+1)\Gamma(k+\lambda+\eta+1)} z^{k-\delta}.$$
(4.5)

Theorem 7. Let $\lambda > 0, \delta < 2, \lambda + \eta > -2, \delta - \eta < 2$ and $\delta(\lambda + \eta) \leq 3\lambda$. If $f(z) \in T$ is in the class $R_{\mu}[\alpha, \beta, \gamma]$ with $0 \leq \mu \leq 1/2, 0 < \beta \leq 1, 0 \leq \alpha < 1$ and $0 \leq \gamma \leq 1$ then

$$\frac{\Gamma(2-\delta+\eta)\left|z\right|^{1-\delta}}{\Gamma(2-\delta)\Gamma(2+\lambda+\eta)} \left\{ 1 - \frac{(2-\delta+\eta)\beta(1-\alpha)(1+\gamma)}{1+\beta\{\gamma(2-\alpha)+1-\alpha\}(1-\mu)(2-\delta)(2+\lambda+\eta)}\left|z\right| \right\} \\
\leq \left|I_{0,z}^{\lambda,\delta,\eta}f(z)\right| \leq \frac{\Gamma(2-\delta+\eta)\left|z\right|^{1-\delta}}{\Gamma(2-\delta)\Gamma(2+\lambda+\eta)} \left\{ 1 + \frac{(2-\delta+\eta)\beta(1-\alpha)(1+\gamma)}{1+\beta\{\gamma(2-\alpha)+1-\alpha\}(1-\mu)(2-\delta)(2+\lambda+\eta)}\left|z\right| \right\}, \tag{4.6}$$

when

$$U_0 = \begin{cases} U, \delta \le 1\\ U \setminus \{1\}, \delta > 1. \end{cases}$$

$$(4.7)$$

Equality in (4.6) is attended for the function given by

$$f(z) = z - \frac{\beta(1-\alpha)(1+\gamma)}{2\{1+\beta[\gamma(2-\alpha)+1-\alpha]\}}z^2.$$
(4.8)

Proof. By making use of Lemma 1, we have

$$I_{0,z}^{\lambda,\delta,\eta}f(z) = \frac{\Gamma(2-\delta+\eta)}{\Gamma(2-\delta)\Gamma(2+\lambda+\eta)} z^{1-\delta} - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(n-\delta+\eta+1)}{\Gamma(n-\delta+1)\Gamma(n+\lambda+\eta+1)} a_n z^{n-\delta}.$$
(4.9)

Letting,

$$H(z) = \frac{\Gamma(2-\delta)\Gamma(2+\lambda+\eta)}{\Gamma(2-\delta+\eta)} z^{\delta} I_{0,z}^{\lambda,\delta,\eta}$$
$$= z - \sum_{n=2}^{\infty} \psi(n) a_n z^n$$
(4.10)

where,

$$\psi(n) = \frac{\left(2 - \delta + \eta\right) \left(1\right)_n}{\left(2 - \delta\right)_{n-1} \left(2 + \lambda + \eta\right)}, n \in \mathbb{N} \setminus \{1\}.$$
(4.11)

We can see that $\psi(n)$ is non -increasing for integers $n, n \in \mathbb{N} \setminus \{1\}$, and we

have

$$0 < \psi(n) \le \psi(2) = \frac{2(2 - \delta + \eta)}{(2 - \delta)(2 + \lambda + \eta)}, n \in \mathbb{N} \setminus \{1\}.$$
(4.12)

Now in view of Theorem 1 and (4.12), we have

$$|H(z)| \ge |z| - \psi(2) |z|^2 \sum_{n=2}^{\infty} a_n$$

$$\geq |z| - \frac{(2-\delta+\eta)\beta(1-\alpha)(1+\gamma)}{1+\beta[\gamma(2-\alpha)+1-\alpha](1-\mu)(2-\delta)(2+\lambda+\eta)} |z|^2$$
(4.13)

and

$$|H(z)| \le |z| + \psi(2)|z|^2 \sum_{n=2}^{\infty} a_n$$

$$\ge |z| + \frac{(2-\delta+\eta)\beta(1-\alpha)(1+\gamma)}{1+\beta[\gamma(2-\alpha)+1-\alpha](1-\mu)(2-\delta)(2+\lambda+\eta)} |z|^2.$$
(4.14)

This completes the proof of Theorem 7.

Now, by applying Theorem 2 to the functions f(z) belonging to the class $C_{\mu}[\alpha,\beta,\gamma]$, we can derive

ON SUBCLASSES OF PRESTARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

Theorem 8. Let $\lambda > 0, \delta < 2, \lambda + \eta > -2, \delta - \eta < 2$ and $\delta(\lambda + \eta) \leq 3\lambda$. If $f(z) \in T$ is in the class $C_{\mu}[\alpha, \beta, \gamma]$ with $0 \leq \mu \leq 1/2$, $0 < \beta \leq 1, 0 \leq \alpha < 1$ and $0 \leq \gamma \leq 1$ then

$$\frac{\Gamma(2-\delta+\eta)\left|z\right|^{1-\delta}}{\Gamma(2-\delta)\Gamma(2+\lambda+\eta)}\left\{1-\frac{(2-\delta+\eta)\beta(1-\alpha)(1+\gamma)}{2\left[1+\beta\left\{\gamma(2-\alpha)+1-\alpha\right\}\right](1-\mu)(2-\delta)(2+\lambda+\eta)}\left|z\right|\right\}$$
(4.15)

$$\leq \left| I_{0,z}^{\lambda,\delta,\eta} f(z) \right| \leq \frac{\Gamma(2-\delta+\eta) \left| z \right|^{1-\delta}}{\Gamma(2-\delta)\Gamma(2+\lambda+\eta)} \left\{ 1 + \frac{(2-\delta+\eta)\beta(1-\alpha)(1+\gamma)}{2[1+\beta\{\gamma(2-\alpha)+1-\alpha\}](1-\mu)(2-\delta)(2+\lambda+\eta)} \left| z \right| \right\} \tag{4.16}$$

where U_0 is defined by (4.7). Equality in (4.6) is attended for the function given by

$$f(z) = z - \frac{\beta(1-\alpha)(1+\gamma)}{2\{1+\beta[\gamma(2-\alpha)+1-\alpha]\}}z^2$$

References

- Ahuja, O.P, Silverman, H., Convolutions of prestarlike functions, Internat J.Math Math Sci., 6(1983), 59-68.
- [2] MacGregor, T.H., The radius of convexity for starlike functions of order1/2, Proc. Amer. Math. Soc., 14(1963), 71-76.
- [3] Owa, S., On the distortion theorems I, Kyungpook Math J., 18(1978), 53-59.
- [4] Owa, S., Ahuja, O.P., An application of fractional calculus, Math Japon, 30(1985), 947-955.
- [5] Owa, S., Saigo, M., Srivastava, H.M., Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, J. Math Anal. Appl., 140(1989), 419-426.
- [6] Owa, S., Uralegaddi, B.A., A class of functions α prestarlike of order β, Bull. Korean Math. Soc., 21(1984), 77-85.
- [7] Robertson, M.S., On the theory of univalent functions, Ann. Math., 37(1936), 374-408.
- [8] Schild, A., On starlike functions of order α, Amer. J. Math., 87(1965), 65-70.
- [9] Sheil-Small, T., Silverman, H., Silvia, E.M., Convolutions multipliers and starlike functions, J. Anal. Math., 41(1982), 181-192.
- [10] Silverman, H., Silvia, E.M., Subclasses of prestarlike functions, Math. Japon., 29(1984), 929-936.

- [11] Srivastava, H.M., Owa, S., (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
- [12] Srivastava, H.M., Owa, S., (Editors), Univalent Functions, Fractional Calculus and Their Applications, Halested Press (Ellis Horwood Limted, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
- [13] Srivastava, H.M., Saigo, M., Owa, S., A class of distortion theorems involving certain operators of fractional calculus, J. Math Anal. Appl., 131(1988), 412-420.

DEPARTMENT OF MATHEMATICS WALCHAND COLLEGE OF ENGINEERING SANGLI-416415, MAHARASHTRA, INDIA *E-mail address*: joshisb@hotmail.com