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VARIATIONAL ANALYSIS OF A ELASTIC-VISCOPLASTIC
CONTACT PROBLEM WITH FRICTION AND ADHESION

SALAH DRABLA AND ZHOR LERGUET

Abstract. The aim of this paper is to study the process of frictional con-

tact with adhesion between a body and an obstacle. The material’s be-

havior is assumed to be elastic-viscoplastic, the process is quasistatic, the

contact is modeled by the Signorini condition and the friction is described

by a non local Coulomb law coupled with adhesion. The adhesion process

is modelled by a bonding field on the contact surface. We derive a varia-

tional formulation of the problem, then, under a smallness assumption on

the coefficient of friction, we prove an existence and uniqueness result of

a weak solution for the model. The proof is based on arguments of time-

dependent variational inequalities, differential equations and Banach fixed

point theorem.

1. Introduction

The adhesive contact between deformable bodies, when a glue is added to

prevent relative motion of the surfaces, has received recently increased attention in

the mathematical literature. Basic modelling can be found in [10], [12], [14] and [6].

Analysis of models for adhesive contact can be found in [2]-[4], [13] and in the recent

monographs [17],[18]. An application of the theory of adhesive contact in the medical

field of prosthetic limbs was considered in [15], [16]; there, the importance of the

bonding between the bone-implant and the tissue was outlined, since debonding may

lead to decrease in the persons ability to use the artificial limb or joint.
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Contact problems for elastic and elastic-viscoelastic bodies with adhesion

and friction appear in many applications of solids mechanics such as the fiber-matrix

interface of composite materials. A consistent model coupling unilateral contact,

adhesion and friction is proposed by Raous, Cangémi and Cocu in [14]. Adhesive

problems have been the subject of some recent publications (see for instance [14],

[9], [1], [3], [6]). The novelty in all the above papers is the introduction of a surface

internal variable, the bonding field, denoted in this paper by β; it describes the

pointwise fractional density of active bonds on the contact surface, and sometimes

referred to as the intensity of adhesion. Following [10], [11], the bonding field satisfies

the restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion

is complete and all the bonds are active; when β = 0 all the bonds are inactive,

severed, and there is no adhesion; when 0 < β < 1 the adhesion is partial and only

a fraction β of the bonds is active. We refer the reader to the extensive bibliography

on the subject in [12], [14], [15]. Such models contain a new internal variable β which

represents the adhesion intensity over the contact surface, it takes values between 0

and 1, and describes the fractional density of active bonds on the contact surface.

Elastic quasistatic contact problems with Signorini conditions and local

Coulomb friction law were recently studied by Cocu and Rocca in [5]. Other elastic-

viscoplastic contact models with Signorini conditions and non local

Coulomb friction law were variationally analyzed in [7], [8] There exists at least one

solution to such problems if the friction coefficient is sufficiently small.

The aims of this paper is to extend the result when non local Coulomb friction

law coupled with adhesion are taken into account at the interface and the material

behavior is assumed to be elastic-viscoplastic.

The paper is structured as follows. In Section 2 we present the elastic-

viscoplastic contact model with fiction and adhesion and provide comments on the

contact boundary conditions. In Section 3 we list the assumptions on the data, derive

the variational formulation. In Sections 4, we present our main existence and unique-

ness results, Theorems 4.1, which state the unique weak solvability of the Signorini

adhesive contact problem with non local Coulomb friction law conditions.
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2. Problem statement

We consider an elastic-viscoplastic body, which occupies a bounded domain

Ω ⊂ Rd (d = 2, 3), with a smooth boundary ∂Ω = Γ divided into three disjoint

measurable parts Γ1,Γ2 and Γ3 such that meas(Γ1) > 0. Let [0, T ] be the time

interval of interest, where T > 0. The body is clamped on Γ1 × (0, T ) and therefore

the displacement field vanishes there, it is also submitted to the action of volume

forces of density f0 in Ω× (0, T ) and surface tractions of density f2 on Γ2× (0, T ). On

Γ3×(0, T ), the body is in adhesive contact with friction with an obstacle the so-called

foundation. The friction is modelled by a non local Coulomb law. We denote by ν

the outward normal unit vector on Γ.

With these assumptions, the classical formulation of the elastic-viscoplastic

contact problem with friction and adhesion is the following.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :

Ω× [0, T ] → Sd, and a bonding field β : Ω× [0, T ] → R such that

σ̇ = Eε (u̇) + G(σ, ε (u)) in Ω× (0, T ), (2.1)

Divσ + f0 = 0 in Ω× (0, T ), (2.2)

u = 0 on Γ1 × (0, T ), (2.3)

σν = f2 on Γ2 × (0, T ), (2.4)

uν ≤ 0, σν − γνβ2Rν(uν) ≤ 0, uν(σν − γνβ2Rν(uν)) = 0 on Γ3 × (0, T ), (2.5)

|στ + γτβ2Rτ (uτ )| ≤ µp(|R(σν)− γνβ2Rν(uν)|),

|στ + γτβ2Rτ (uτ )| < µp(|R(σν)− γνβ2Rν(uν)|) ⇒ uτ = 0,

|στ + γτβ2Rτ (uτ ) = µp(|R(σν)− γνβ2Rν(uν)|) ⇒ ∃λ ≥ 0,

such that στ + γτβ2Rτ (uτ ) = −λuτ .

on Γ3 × (0, T ),

(2.6)

β̇ = −(β(γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ), (2.7)

u (0) = u0, σ (0) = σ0 in Ω, β(0) = β0 on Γ3 (2.8)
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We now provide some comments on equations and conditions (2.1)-(2.8). The material

is assumed to be elastic-viscoplastic with a constitutive law of the form (2.1), where

E and G are constitutive functions which will be described below. We denote by ε(u)

the linearized strain tensor. The equilibrium equation is given by (2.2), where “Div”

denotes the divergence operator for tensor valued functions. Equations (2.3) and (2.4)

represent the displacement and traction boundary conditions.

Conditions (2.5) represent he Signorini contact condition with adhesion where

uν is the normal displacement σνrepresents the normal stress, γν denote a given

adhesion coefficient and Rν is the truncation operator define by

Rν(s) =


L if s < −L,

−s if − L ≤ s ≤ 0,

0 if s > 0,

where L > 0 is the characteristic length of the bond, beyond which it does not offer

any additional traction. The introduction of operator Rν , together with the operator

Rτ defined below , is motivated by the mathematical arguments but it is not restrictive

for physical point of view, since no restriction on the size of the parameter L is made

in what follows. Thus, by choosing L very large, we can assume that Rν(uν) = uν

and, therefore, from (2.5) we recover the contact conditions

uν ≤ 0, σν − γνβ2uν ≤ 0, uν(σν − γνβ2uν) = 0 on Γ3 × (0, T ),

It follows from (2.5) that there is no penetration between the body and the foundation,

since uν ≤ 0 during the process.

Conditions (2.6) are a non local Coulomb friction law conditions coupled

with adhesion, where uτ , στ denote tangential components of vector u and tensor σ

respectively. Rτ is the truncation operator given by

Rτ (v) =


v if ‖v‖ ≤ L,

L v
‖v‖ if ‖v‖ > L.
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This condition shows that the magnitude of the shear on the contact surface depends

on the bonding field and on the tangential displacement, but as long as it does not

exceed the bond length L.

R will represent a normal regularization operator that is , linear and continues

operator R : H− 1
2 (Γ) −→ L2(Γ). We shall need it to regularize the normal trace of

the stress witch is too rough on Γ. p is a non-negative function, the so-called friction

bound, µ ≥ 0 is the coefficient of friction. The friction law was used with p (r) = r+.

A new version of Coulomb law consists to take

p(r) = r(1− αr)+,

where α is a small positive coefficient related to the hardness and the wear of the

contact surface and r+ = max{0, r}.

Also, note that when the bonding field vanishes, then the contact conditions

(2.5) and (2.6) become the classic Signorini contact with a non local Coulomb friction

law conditions were used in ([8]), that is

uν ≤ 0, σν ≤ 0, uνσν = 0 on Γ3 × (0, T ),



|στ | ≤ µp(|R(σν)|),

|στ | < µp(|R(σν)|) ⇒ uτ = 0,

|στ | = µp(|R(σν)|) ⇒ ∃λ ≥ 0, such that στ = −λuτ .

on Γ3 × (0, T ),

The evolution of the bonding field is governed by the differential equation (2.7) with

given positive parameters γν , γτ and εa, where r+ = max{0, r}. Here and below

in this paper, a dot above a function represents the derivative with respect to the

time variable. We note that the adhesive process is irreversible and, indeed, once

debonding occurs bonding cannot be reestablished, since β̇ ≤ 0. Finally, (2.8) is the

initial condition in which β0 is a given bonding field.
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3. Variational formulation and preliminaries

In this section, we list the assumptions on the data and derive a variational

formulation for the contact problem. To this end we need to introduce some notation

and preliminary material.

Here and below Sd represents the space of second order symmetric tensors on Rd. We

recall that the inner products and the corresponding norms on Rd and Sd are given

by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u, v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ)
1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over repeated

indices is applied and the index that follows a comma represents the partial derivative

with respect to the corresponding component of the spatial variable, e.g. ui,j = ∂ui

∂xj
.

Everywhere below, we use the classical notation for Lp and Sobolev spaces associated

to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d and H and H1 for the

following spaces :

L2(Ω)d = { v = (vi) | vi ∈ L2(Ω) }, H1(Ω)d = { v = (vi) | vi ∈ H1(Ω) },

H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the

canonical inner products given by

(u, v)L2(Ω)d =
∫

Ω

u · v dx, (u, v)H1(Ω)d =
∫

Ω

u · v dx +
∫

Ω

∇u · ∇v dx,

(σ, τ)H =
∫

Ω

σ · τ dx, (σ, τ)H1 =
∫

Ω

σ · τ dx +
∫

Ω

Div σ ·Div τ dx,

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1 , respectively. Here

and below we use the notation

ε(v) = (εij(v)), εij(v) =
1
2
(vi,j + vj,i) ∀ v ∈ H1(Ω)d,

Div τ = (τij,j) ∀ τ ∈ H1.
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For every element v ∈ H1(Ω)d we also write v for the trace of v on Γ and we denote

by vν and vτ the normal and tangential components of v on Γ given by vν = v · ν,

vτ = v − vνν.

Let now consider the closed subspace of H1(Ω)d defined by

V = { v ∈ H1(Ω)d | v = 0 on Γ1 }.

Since meas (Γ1) > 0, the following Korn’s inequality holds:

‖ε(v)‖H ≥ cK ‖v‖H1(Ω)d ∀ v ∈ V, (3.1)

where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V we

consider the inner product given by

(u, v)V = (ε(u), ε(v))H (3.2)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.1) that

‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem, (3.1) and (3.2), there exists

a constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (3.3)

For every real Hilbert space X we use the classical notation for the spaces Lp(0, T ;X)

and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k ≥ 1 and we also introduce the set

Q = { θ ∈ L∞(0, T ;L2(Γ3)) | 0 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3 }.

Finally, if X1 and X2 are two Hilbert spaces endowed with the inner products (·, ·)X1

and (·, ·)X2 and the associated norms ‖ · ‖X1 and ‖ · ‖X2 , respectively, we denote by

X1×X2 the product space together with the canonical inner product (·, ·)X1×X2 and

the associated norm ‖ · ‖X1×X2 .
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In the study of the problem P, we consider the following assumptions on the

problem data.

E : Ω× Sd −→ Sd is a symmetric and positive definite tensor :

(a) Eijkl ∈ L∞ (Ω) for every i, j, k, l = 1, d;

(b) Eσ · τ = σ · Eτ for every σ, τ ∈ Sd;

(c) there exists α > 0 such that Eσ · σ ≥ α |σ|2 ∀σ ∈ Sd, a.e. in Ω

(3.4)



G : Ω× Sd × Sd −→ Sd and

(a) there exists LG > 0 such that :

|G (·, σ1, ε1)− G (·, σ2, ε2)| ≤ LG(|σ1 − σ2|+ |ε1 − ε2|)

for every σ1, σ2, ε1, ε2 ∈ Sd a.e. in Ω;

(b) G (·, σ, ε) is a measurable function with respect to the Lebesgue

measure on Ω for every ε, σ ∈ Sd;

(c) G (·, 0, 0) ∈ H.

(3.5)



The friction function p : Γ3 × R+ −→ R+ verifies

(a) there exists M > 0 such that :

|p (x, r1)− p (x, r2)| ≤ M |r1−r2|

for every r1, r2 ∈ R+, a.e. x ∈ Γ3;

(b) x 7→ p (x, r) is measurable on Γ3, for every r ∈ R+;

(c) p (x, 0) = 0, a.e. x ∈ Γ3.

(3.6)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ W 1,∞(0, T ;L2(Ω)d), f2 ∈ W 1,∞(0, T ;L2(Γ2)d), (3.7)

and we define the function f : [0, T ] → V by

(f(t), v)V =
∫

Ω

f0(t) · v dx +
∫

Γ2

f2(t) · v da, (3.8)
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for all u, v ∈ V and t ∈ [0, T ], and we note that the condition (3.7) implies that

f ∈ W 1,∞(0, T ;V ). (3.9)

For the Signorini problem we use the convex subset of admissible displacements given

by

Uad = {v ∈ H1 | v = 0 on Γ1 , vν ≤ 0 on Γ3} (3.10)

The adhesion coefficients γν , γτ and the limit bound εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3 (3.11)

while the friction coefficient µ is such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3. (3.12)

Finally, we assume that the initial data verifies

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.13)

We define the adhesion functional jad : L∞(Γ3)× V × V → R by

jad(β, u, v) =
∫

Γ3

(
− γνβ2Rν(uν)vν + γτβ2Rτ (uτ ) · vτ

)
da, (3.14)

and the friction functional jfr : L∞(Γ3)×H1 × V × V → R by

jfr(β, σ, u, v) =
∫

Γ3

µp(|R(σν)− γνβ2Rν(uν)|) · |vτ | da, (3.15)

The initial conditions u0, σ0 and β0 satisfy

u0 ∈ Uad, σ0 ∈ H1, β0 ∈ L2(Γ3) ∩Q, (3.16)

and

(σ0, ε(v)− ε(u0))H + jad(β0, σ0, v − u0) + jfr(β0, σ0, ξ0, v)− jfr(β0, σ0, ξ0, u0) ≥

≥ (f0, v − u0)V + (f2, v − u0)L2(Γ2)d ∀ v ∈ Uad. (3.17)

Let us remark that assumption (3.16) and (3.17) involve regularity conditions of the

initial data u0, σ0 and β0 and a compatibility condition between u0, σ0, β0, f0 and

f2.

41



SALAH DRABLA AND ZHOR LERGUET

By a standard procedure based on Green’s formula combined with (2.2)-(2.4)

and (3.8), we can derive the following variational formulation of problem P, in terms

of displacement, stress and bonding fields.

Proof.[Problem PV ] Find a displacement field u : [0, T ] → V, a stress field σ :

[0, T ] → H1 and a bonding field β : [0, T ] → L2(Γ3) such that

σ̇ = Eε (u̇) + G(σ, ε (u)) in Ω× (0, T ), (3.18)

u(t) ∈ Uad, (σ(t), ε(v)− ε(u(t)))H + jad(β(t), u(t), v − u(t))+

jfr(β(t), σ(t), u(t), v)− jfr(β(t), σ(t), u(t), u(t)) ≥ (f(t), v − u(t))V

∀ v ∈ Uad, t ∈ [0, T ], (3.19)

β̇(t) = −
(
β(t)

(
γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2

)
− εa

)
+

a.e. on t ∈ (0, T ),

u(0) = u0, σ(0) = σ0, β(0) = β0. (3.20)

�

In the rest of this section, we derive some inequalities involving the functionals

jad, and jfr which will be used in the following sections. Below in this section β, β1,

β2 denote elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. on Γ3, u1, u2, v1, v2,

u and v represent elements of V ; σ, σ1, σ2 denote elements of H1 and c is a generic

positive constants which may depend on Ω, Γ1, Γ3, p, γν , γτ and L, whose value may

change from place to place. For the sake of simplicity, we suppress in what follows

the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

First, we remark that the jad is linear with respect to the last argument and therefore

jad(β, u,−v) = −jad(β, u, v). (3.21)

Next, using (3.14) and the inequalities |Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L, |β1| ≤ 1,

|β2| ≤ 1, for the previous inequality, we deduce that

jad(β1, u1, u2 − u1) + jad(β2, u2, u1 − u2) ≤ c

∫
Γ3

|β1 − β2| ‖u1 − u2‖ da,
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then, we combine this inequality with (3.3), to obtain

jad(β1, u1, u2 − u1) + jad(β2, u2, u1 − u2) ≤ c ‖β1 − β2‖L2(Γ3)‖u1 − u2‖V . (3.22)

Next, we choose β1 = β2 = β in (3.22) to find

jad(β, u1, u2 − u1) + jad(β, u2, u1 − u2) ≤ 0. (3.23)

Similar manipulations, based on the Lipschitz continuity of operators Rν , Rτ show

that

|jad(β, u1, v)− jad(β, u2, v)| ≤ c ‖u1 − u2‖V ‖v‖V . (3.24)

Also, we take u1 = v and u2 = 0 in (3.23), then we use the equalities Rν(0) = 0,

Rτ (0) = 0 and (3.22) to obtain

jad(β, v, v) ≥ 0. (3.25)

Next, we use (3.15), (3.6)(a), keeping in mind (3.3), propriety of R and the inequalities

|Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L, |β1| ≤ 1, |β2| ≤ 1 we obtain

jfr(β1, σ1, u1, u2)− jfr(β1, σ1, u1, u1) + jfr(β2, σ2, u2, u1)− jfr(β2, σ2, u2, u2) ≤

≤ c2
0M ‖µ‖

L∞(Γ3)(‖β2 − β1‖L2(Γ3) + ‖σ2−σ1||H1)||u2 − u1‖V . (3.26)

Now, by using (3.6)(a) and (3.12), it follows that the integral in (3.15) is well defined.

Moreover, we have

jfr(β, σ, u, v) ≤ c2
0M‖µ‖L∞(Γ3)‖(‖σ||H1 + ‖β‖L2(Γ3))||u‖V ‖v‖V . (3.27)

The inequalities (3.22)-(3.27) combined with equalities (3.21) will be used in various

places in the rest of the paper.

4. Existence and uniqueness result

Our main result which states the unique solvability of Problem PV , is the

following.
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Theorem 4.1. Assume that assumptions (3.4)-(3.7) and (3.11)-(3.13) hold. Then,

there exists µ0 > 0 depending only on Ω, Γ1, Γ3, E and p such that, if ‖µ‖L∞(Γ3) < µ0,

then Problem PV has a unique solution (u, σ, β). Moreover, the solution satisfies

u ∈ W 1,∞(0, T ;V ), (4.1)

σ ∈ W 1,∞(0, T ;H1), (4.2)

β ∈ W 1,∞(0, T ;L2(Γ3)) ∩Q. (4.3)

A triple of functions (u, σ, β) which satisfies (2.1), and (3.19)-(3.20) is called

a weak solution of the frictional adhesive contact Problem P. We conclude by Theorem

4.1. that, under the assumptions (3.4)-(3.7) and (3.11)-(3.13), if ‖µ‖L∞(Γ3) < µ0, then

there exists a unique weak solution of Problem P which verifies (4.1)-(4.3), that we

present in what follows.

The proof of the Theorem 4.1 will be carried out in several steps. It based

on fixed-point arguments. To this end, we assume in the following that (3.4)-(3.7)and

(3.11)-(3.13) hold; below, c is a generic positive constants which may depend on Ω,

Γ1, Γ3, E and p, γν , γτ and L, whose value may change from place to place. For

the sake of simplicity, we suppress in what follows the explicit dependence on various

functions on x ∈ Ω ∪ Γ3.

For each η = (η1, η2) ∈ L∞(0, T ;H×L2(Γ3)) we introduce the function zη = (z1
η, z2

η) ∈

W 1,∞(0, T ;H× L2(Γ3)) defined by

zη(t) =

t∫
0

η(s)ds + z0 ∀t ∈ [0, T ], (4.4)

where

z0 = (σ0 − Eε (u0) , β0). (4.5)

In the first step, we consider the following variational problem.

Proof.[Problem Pη] Find a displacement field uη : [0, T ]→ V , a stress field ση :

[0, T ] → H1 such that

ση (t) = Eε(uη (t)) + z1
η (t) (4.6)
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uη(t) ∈ Uad, (ση (t) , ε(v)− ε(uη(t)))H + jad(z2
η(t), uη(t), v − uη(t))+

+jfr(z2
η(t), ση, uη(t), v)− jfr(z2

η(t), ση, uη(t), uη(t)) ≥ (4.7)

≥ (f(t), v − uη(t))V ∀ v ∈ Uad.

�

We have the following result.

Lemma 4.2. There exists µ0 > 0 which depends on Ω, Γ1, Γ3, E and p such that,

if ‖µ‖L∞(Γ3) < µ0, then, Problem Pη has a unique solution having the regularity

uη ∈ W 1,∞(0, T, V ), ση (t) ∈ W 1,∞(0, T ;H1). Moreover,

uη(0) = u0, ση(0) = σ0 (4.8)

Proof. Using Riez’s representation theorem we may define the operator Aη(t) : V →

V and the element fη(t) ∈ V by

(Aη(t)uη(t), v)V = (Eε(uη(t)), ε(v))H + jad(z2
η (t) , uη(t), v)

∀ t ∈ [0, T ], ∀ w, v ∈ Uad, (4.9)

(fη(t), v)V = (f(t), v)V − (z1
η (t) , ε(v))H

∀ t ∈ [0, T ], ∀v ∈ Uad, (4.10)

Let t ∈ [0, T ]. We use the assumption (3.4), the equalities ( 3.21) and the inequalities

(3.23) and (3.24) to prove that Aη(t) is a strongly monotone Lipschitz continuous

operator on V. Moreover,by (3.10) we have that Uad is a closed convex non-empty set

of V . Using (3.15), we can easily check that jfr(z2
η(t), ση, uη(t), .) is a continuous

seminorm on V and moreover, it satisfies (3.26) and(3.27). Then by an existence

and uniqueness result on elliptic quasivariational inequalities, drabla it follows that

there exists a unique solution uη(t) such that

uη(t) ∈ Uad.
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(Aη(t)uη(t), v)V + jfr(, z2
η(t), ση, uη(t), v)− jfr(z2

η(t), ση, uη(t), uη(t)) ≥

≥ (fη(t), v − uη(t))V ∀ v ∈ Uad.

Taking ση (t)), defined by (4.6) and using (4.4), we deduce that ση ∈ W 1,∞(0, T ;H)

and (4.7). Let us remark, that for v = ugη (t)∓ ϕ ∀ϕ ∈ D (Ω)d
, it comes from (4.6)

and Green’s formula

Divση(t) + f0(t) = 0. (4.11)

Keeping in mind that f0 ∈ W 1,∞(0, T ;L2 (Ω)d) it follows that ση ∈ W 1,∞(0, T ;H1).

Therefore, the existence and uniqueness of (uη(t), ση (t)) ∈ V× H1 solution of problem

Pη is established under smallness assumption. The initial conditions (4.8) follows

from (3.17), (4.4) and (4.5) and the uniqueness of the problem for t = 0.

Let now t1, t2 ∈ [0, T ], Using (3.4), (3.1) and (4.4)we obtain

‖uη(t1)− uη(t2)‖V ≤ c(‖f(t1)− f(t2)‖V + ||zη(t1)− zη(t2)‖H×L2(Γ3)+

+‖ση(t1)− ση(t2)‖), (4.12)

and from (4.6), (4.11) and (4.12), it result that

‖ση(t1)− ση(t2)‖V ≤ c(‖f(t1)− f(t2)‖V + ||z1
η(t1)− z1

η(t2)‖H). (4.13)

Recall that f ∈ W 1,∞(0, T ;V ), zη = (z1
η, z2

η) ∈ W 1,∞(0, T ;H × L2(Γ3)), it follows

from (4.12) and (4.13) that uη ∈ W 1,∞(0, T ;V ) and ση ∈ W 1,∞(0, T ;H1). �

We denote by βη ∈ W 1,∞(0, T ;L2(Γ3)) the function defined by

βη = z2
η, (4.14)

and consider the mapping F : [0, T ]× L2(Γ3) → L2(Γ3) defined by

F (t, βη) = −(βη(t)(γνRν((uη)γ(t))2 + γτ‖Rτ ((uη)τ (t))‖2)− εa)+, (4.15)

for all t ∈ [0, T ] and βη ∈ W 1,∞(0, T ;L2(Γ3))

Using the assumptions (3.4), (3.5), (4.4), and (4.5), we may consider the

operator

Λη : L∞(0, T ;H× L2(Γ3))−→L∞(0, T ;H× L2(Γ3))
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define by

Λη = (G(ση, ε (uη)), F (t, βη)) ∀η ∈ L∞(0, T ;H× L2(Γ3)) (4.16)

where (ση, uη) is the solution of the variational problem Pη.

In the last step, we will prove the following result.

Lemma 4.3. There exists a unique element η∗ = (η∗1 , η∗2) such that Λη∗ =η∗ and

η∗ ∈ L∞(0, T ;H× L2(Γ3))

Proof. Let η1 = (η1
1 , η2

1) and η2 = (η1
2 , η2

2) ∈ L∞(0, T ;H× L2(Γ3)) and let t ∈ [0, T ].

We use similar arguments to those used in the proof of (4.10) to deduce that

‖uη1 − uη2‖V ≤ c(||zη1 − zη2‖H×L2(Γ3) + ‖ση1 − ση2‖H), (4.17)

and from (3.4), (3.5) and (4.6), we obtain that

‖ση1 − ση2‖H ≤ c(‖uη1 − uη2‖V + ||zη1 − zη2‖H×L2(Γ3)), (4.18)

from (4.17) and (4.18), it results that

‖uη1 − uη2‖V ≤ c||zη1 − zη2‖H×L2(Γ3). (4.19)

On the other hand, it follows from (4.15) that

||Fη2(t, βη2)− Fη1(t, βη1)||L2(Γ3) ≤

≤ c ‖βη1(t)Rν(uη1ν(t))2 − βη2(t)Rν(uη2ν(t))2‖L2(Γ3)+

+‖βη1(t)‖Rτ (uη1τ (t))‖2 − βη2(t)‖Rτ (uη2τ (t))‖2‖L2(Γ3).

Using the definition of Rν and Rτ and writing βη1 = βη1 − βη2 + βη2 , we get

||F (t, βη2)− F (t, βη1)||L2(Γ3) ≤ c ‖βη1(t)− βη2(t)‖L2(Γ3) + c‖uη1(t)− uη2(t)‖L2(Γ3).

We now use (4.17), (4.18), (4.14) and (4.5) to deduce

‖Λη2(t)− Λη1(t)‖H×L2(Γ3) ≤ c‖zη2(t)− zη1(t)‖H×L2(Γ3).

From (3.5), (4.4), (4.16) and the last inequalities, it result that

‖Λη2(t)− Λη1(t)‖H×L2(Γ3) ≤ c

∫ t

0

‖η2(t)− η1(t)‖H×L2(Γ3)ds. (4.20)
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Denoting now by Λp the power of the operator Λ, (4.20) implies by recurrence that

‖Λη2(t)− Λη1(t)‖H×L2(Γ3) ≤ c

∫ t

0

∫ s

0

∫ q

0

‖η2(t)− η1(t)‖H×L2(Γ3)dr ds,

for all t ∈ [0, T ] and p ∈ N . Hence, it follows that

‖Λpη2 − Λpη1‖L∞(0,T,H×L2(Γ3)) ≤
cnTn

n!
‖η2 − η1‖L∞(0,T,H×L2(Γ3)), ∀p ∈ N. (4.21)

and since lim
p→∞

cpT p

p!
= 0, inequality (4.21) shows that for p sufficiently large

Λp : L∞(0, T ;H × L2(Γ3))→L∞(0, T ;H × L2(Γ3)) is a contraction. Then, we con-

clude by using the Banach fixed point theorem that Λ has a unique fixed point

η∗ ∈ L∞(0, T ;H × L2(Γ3)) such that Λη∗ = η∗. Hence, from (4.16) it results for

all t ∈ [0, T ],

η∗(t) = (η∗1(t), η∗2(t)) = (G(ση∗(t), ε (uη∗(t))), (F (t, βη∗(t)))) (4.22)

�

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof.[Proof of Theorem 4.1.] Existence. Let η∗ ∈ L∞(0, T ;H×L2(Γ3)) be the fixed

point of Λ and let (uη∗, ση∗) ∈ W 1,∞(0, T ;H1 × V ) be the solution of Problem Pη∗ .

Let also βη∗ ∈ W 1,∞(0, T ;L2(Γ3)) be the solution of Problem Pη for η = η∗. We shall

prove that (uη∗ , ση∗ , βη∗) is a unique solution of Problem PV .

The regularity expressed in (4.1) follow from Lemma 4.1, Lemma 4.3 and the

fixed point of operators Λ.

The initial conditions (3.20) follow from (4.5), (4.14) and (4.8) for η = η∗.

Moreover, the equalities (3.18) and (3.20) follow from (4.4), (4.6), Lemma 4.4, (4.12)

and (4.16) for η = η∗ since

σ̇η∗ (t) = Eε(uη∗ (t)) + ż1
η∗ (t) a.e. t ∈ (0, T )

z1
η∗ (t) = η∗1(t) = G(ση∗(t), ε (uη∗(t))) a.e. t ∈ (0, T )

β̇η∗(t) = ż2
η∗ (t) = η∗2(t) = F (t, βη∗(t)) a.e. t ∈ (0, T )
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Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the

fixed point of operators Λ defined by (4.16). Indeed, let (u, σ, β) ∈ W 1,∞(0, T ;V ×

H1 × L2(Γ3)) be another solution of Problem PV .

We denote by η ∈ L∞(0, T ;H× L2(Γ3)) the function defined by

η(t) = (G(σ, ε (u)), F (t, β)), ∀t ∈ [0, T ], (4.23)

and let zη ∈ W 1,∞(0, T ;H × L2(Γ3)) be the function given by (4.4) and (4.5). It

results that (u, σ) is a solution to Problem Pη and since by Lemma 4.1, this problem

has a unique solution denoted (uη, ση), we obtain

u = uη and σ = ση. (4.24)

Then, we replace (u, σ) = (uη, ση) = (uη∗, ση∗) in (3.20) and use the initial condition

(3.20) to see that β is a solution to Problem Pη. Since by Lemma 4.2, this last

problem has a unique solution denoted βη, we find

β = βη. (4.25)

We use now (4.16) and (4.25) to obtain that η = (G(ση, ε (uη)), Fη(t, βη)), i.e. η is a

fixed point of the operator Λ. It follows now from Lemma 4.3 that

η = η∗. (4.26)

The uniqueness part of the theorem is now a consequence of (4.24), (4.25) and (4.26).

�
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Cité Maabouda, 19000 Sétif, Algérie

E-mail address: zhorlargor@yahoo.fr

51


