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ANALYSIS OF A ELECTRO-ELASTIC CONTACT PROBLEM
WITH FRICTION AND ADHESION

SALAH DRABLA AND ZILOUKHA ZELLAGUI

Abstract. We consider a mathematical model which describes the qua-

sistatic frictional contact between a piezoelectric body and an obstacle, the

so-called foundation. A nonlinear electro-elastic constitutive law is used to

model the piezoelectric material. The contact is modelled with Signorini’s

conditions and the associated with a regularized Coulomb’s law of dry fric-

tion in witch the adhesion of contact surfaces is taken into account. The

evolution of the bonding field is described by a first order differential equa-

tion. We derive a variational formulation for the model, in the form of a

coupled system for the displacements, the electric potential and the adhe-

sion. Under a smallness assumption on the coefficient of friction, we prove

the existence of a unique weak solution of the model. The proof is based

on arguments of time-dependent quasi-variational inequalities, differential

equations and Banach’s fixed point theorem.

1. Introduction

The piezoelectric effect is characterized by the coupling between the mechani-

cal and electrical properties of the materials. Indeed, the apparition of electric charges

on some crystals submitted to the action of body forces and surface tractions was ob-

served and their dependence on the deformation process was underlined. Conversely,

it was proved experimentally that the action of electric field on the crystals may gen-

erate strain and stress. A deformable material which presents such a behavior is called

a piezoelectric material. Piezoelectric materials are used extensively as switches and
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actuary in many engineering systems, in radioelectronics, electroacoustics, and mea-

suring equipments. General models for electro-elastic materials can be found in [3], [5]

and in [17]. A static frictional contact problem for electro-elastic materials was consid-

ered in [4] and in [20]. A slip-dependent frictional contact problem for electro-elastic

materials was studied in [26] and a frictional problem with normal compliance for

electroviscoelastic materials was considered in [27], [19] and in [18]. In the last two

references the variational formulations of the corresponding problems were derived

and existence and uniqueness results for the weak solutions were obtained.

The adhesive contact between deformable bodies, when a glue is added to

prevent relative motion of the surfaces, has received recently increased attention in

the mathematical literature. Basic modelling can be found in [13], [15] and in [9].

Analysis of models for adhesive contact can be found in [2]-[7], [16] and in the recent

monographs [24] and [25]. An application of the theory of adhesive contact in the

medical field of prosthetic limbs was considered in [22] and in [23]; there, the impor-

tance of the bonding between the bone-implant and the tissue was outlined, since

debonding may lead to decrease in the persons ability to use the artificial limb or

joint.

Contact problems for elastic and elastic-viscoelastic bodies with adhesion

and friction appear in many applications of solids mechanics such as the fiber-matrix

interface of composite materials. A consistent model coupling unilateral contact,

adhesion and friction is proposed by Raous, Cangémi and Cocu in [21]. Adhesive

problems have been the subject of some recent publications (see for instance [12],

[1], [6] and [9]). The novelty in all the above papers is the introduction of a surface

internal variable, the bonding field, denoted in this paper by β; it describes the

pointwise fractional density of active bonds on the contact surface, and sometimes

referred to as the intensity of adhesion. Following [13], [14], the bonding field satisfies

the restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion

is complete and all the bonds are active; when β = 0 all the bonds are inactive,

severed, and there is no adhesion; when 0 < β < 1 the adhesion is partial and only a

fraction β of the bonds is active. We refer the reader to the extensive bibliography on
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the subject in [15] and in [22]. Such models contain a new internal variable β which

represents the adhesion intensity over the contact surface, it takes values between 0

and 1, and describes the fractional density of active bonds on the contact surface.

The aim of this paper is to continue the study of problems begun in [19], [27]

and in [18]. The novelty of the present paper is to extend the result when the contact

and friction are modelled by Signorini’s conditions and a non local Coulomb’s friction

law, respectively. Moreover, the adhesion is taken into account at the interface and

the material behavior is assumed to be electro-elastic.

The paper is structured as follows. In Section 2 we present the electro-

elastic contact model with friction and adhesion and provide comments on the con-

tact boundary conditions. In Section 3 we list the assumptions on the data and

derive the variational formulation. In Sections 4, we present our main existence and

uniqueness results, Theorems 4.1, which states the unique weak solvability of the

Signorini’s adhesive contact electro-elastic problem with non local Coulomb’s friction

law conditions.

2. Problem statement

We consider the following physical setting. An electro-elastic body occupies

a bounded domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary ∂Ω = Γ. The body

is submitted to the action of body forces of density f0 and volume electric charges of

density q0. It is also submitted to mechanical and electric constraints on the boundary.

To describe them, we consider a partition of Γ into three measurable parts Γ1, Γ2,

Γ3 on one hand, and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb, on the

other hand., such that meas(Γ1) > 0, meas(Γa) > 0. We assume that the body is

clamped on Γ1 and surface tractions of density f2 act on Γ2. On Γ3 the body is in

adhesive contact with an insulator obstacle, the so-called foundation. We also assume

that the electrical potential vanishes on Γa and a surface electric charge of density q2

is prescribed on Γb. We denote by Sd the space of second order symmetric tensors on

Rd and we use · and ||·|| for the inner product and the Euclidean norm on Rd and

Sd, respectively. Also, below ν represents the unit outward normal on Γ. With these
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assumptions, the classical formulation of the electro-elastic contact problem coupling

friction and adhesion is the following.

Problem 2.1 (P). Find a displacement field u : Ω × [0, T ] → Rd, a stress field

σ : Ω× [0, T ] → Sd, an electric potential ϕ : Ω× [0, T ] → R, an electric displacement

field D : Ω× [0, T ] → Rd and a bonding field β : Ω× [0, T ] → R such that

σ = Fε(u)− E∗E(ϕ) in Ω× (0, T ), (2.1)

D = BE(ϕ) + Eε(u) in Ω× (0, T ), (2.2)

Divσ + f0 = 0 in Ω× (0, T ), (2.3)

div D = q0 on Ω× (0, T ), (2.4)

u = 0 on Γ1 × (0, T ), (2.5)

σν = f2 on Γ2 × (0, T ), (2.6)

uν ≤ 0, σν − γνβ
2Rν(uν) ≤ 0, uν(σν − γνβ

2Rν(uν)) = 0 on Γ3 × (0, T ), (2.7)



|στ + γτβ
2Rτ (uτ )| ≤ µp(|R(σν)− γνβ

2Rν(uν)|),

|στ + γτβ
2Rτ (uτ )| < µp(|R(σν)− γνβ

2Rν(uν)|) ⇒ uτ = 0,

|στ + γτβ
2Rτ (uτ ) = µp(|R(σν)− γνβ

2Rν(uν)|) ⇒ ∃λ ≥ 0,

such that στ + γτβ
2Rτ (uτ ) = −λuτ ,

on Γ3 × (0, T ),

(2.8)

β̇ = −(β(γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa) on Γ3 × (0, T ), (2.9)

ϕ = 0 on Γa × (0, T ), (2.10)

D · ν = q2 on Γb × (0, T ), (2.11)

D · ν = 0 on Γ3 × (0, T ), (2.12)

β(0) = β0 on Γ3. (2.13)

We now provide some comments on equations and conditions (2.1)-(2.13).
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Equations (2.1) and (2.2) represent the electro-elastic constitutive law in

which ε(u) denotes the linearized strain tensor, E(ϕ) = −∇ϕ is the electric field,

where ϕ is the electric potential, F is a given nonlinear function, E represents the

piezoelectric operator, E∗ is its transposed, B denotes the electric permittivity op-

erator, and D = (D1, . . . , Dd) is the electric displacement vector. Details on the

constitutive equations of the form (2.1) and (2.2) can be find, for instance, in [3] and

in [4]. Next, equations (2.3) and (2.4) are the equilibrium equations for the stress and

electric-displacement fields, respectively, in which “Div” and “div” denote the diver-

gence operator for tensor and vector valued functions, respectively. Equations (2.5)

and (2.6) represent the displacement and traction boundary conditions Conditions

(2.10) and (2.11) represent the electric boundary conditions.

Conditions (2.7) represent he Signorini’s contact condition with adhesion

where uν is the normal displacement σν represents the normal stress, γν denote

a given adhesion coefficient and Rν is the truncation operator define by

Rν(s) =


L if s < −L,

−s if − L ≤ s ≤ 0,

0 if s > 0,

where L > 0 is the characteristic length of the bond, beyond which it does not offer

any additional traction. The introduction of operator Rν , together with the operator

Rτ defined below , is motivated by the mathematical arguments but it is not restrictive

for physical point of view, since no restriction on the size of the parameter L is made

in what follows. Thus, by choosing L very large, we can assume that Rν(uν) = uν

and, therefore, from (2.7) we recover the contact conditions

uν ≤ 0, σν − γνβ
2uν ≤ 0, uν(σν − γνβ

2uν) = 0 on Γ3 × (0, T ),

It follows from (2.7) that there is no penetration between the body and the foundation,

since uν ≤ 0 during the process.

Conditions (2.8) are a non local Coulomb’s friction law conditions coupled

with adhesion, where uτ and στ denote tangential components of vector u and tensor
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σ respectively. Rτ is the truncation operator given by

Rτ (v) =


v if ‖v‖ ≤ L,

L
v

‖v‖
if ‖v‖ > L.

This condition shows that the magnitude of the shear on the contact surface depends

on the bonding field and on the tangential displacement, but as long as it does not

exceed the bond length L.

R will represent a normal regularization operator that is , linear and continues

operator R : H−
1
2 (Γ) → L2(Γ). We shall need it to regularize the normal trace of

the stress witch is too rough on Γ. p is a non-negative function, the so-called friction

bound, µ ≥ 0 is the coefficient of friction. The friction law was used in some studies

with p (r) = r+ where r+ = max{0, r}. Recently, from thermodynamic considerations,

a new version of Coulomb’s law is proposed; its consists to take

p(r) = r(1− αr)+, (2.14)

where α is a small positive coefficient related to the hardness and the wear of the

contact surface.

Also, note that when the bonding field vanishes, then the contact conditions

(2.7) and (2.8) become the classic Signorini’s contact with a non local Coulomb’s

friction law conditions were used in ([11]), that is

uν ≤ 0, σν ≤ 0, uνσν = 0 on Γ3 × (0, T ),
|στ | ≤ µp(|R(σν)|),

|στ | < µp(|R(σν)|) ⇒ uτ = 0,

|στ | = µp(|R(σν)|) ⇒ ∃λ ≥ 0, such that στ = −λuτ .

on Γ3 × (0, T ),

The evolution of the bonding field is governed by the differential equation (2.9) with

given positive parameters γν , γτ and εa, where r+ = max{0, r}. Here and below

in this paper, a dot above a function represents the derivative with respect to the

time variable. We note that the adhesive process is irreversible and, indeed, once
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debonding occurs bonding cannot be reestablished, since β̇ ≤ 0. Finally, (2.13) is the

initial condition in which β0 is a given bonding field.

3. Variational formulation and preliminaries

In this section, we list the assumptions on the data and derive a variational

formulation for the contact problem. To this end we need to introduce some notation

and preliminary material.

Here and below Sd represents the space of second order symmetric tensors on Rd. We

recall that the inner products and the corresponding norms on Rd and Sd are given

by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ) 1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over repeated

indices is applied and the index that follows a comma represents the partial derivative

with respect to the corresponding component of the spatial variable, e.g. ui,j = ∂ui

∂xj
.

Everywhere below, we use the classical notation for Lp and Sobolev spaces associated

to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d and H and H1 for the

following spaces :

L2(Ω)d = { v = (vi) | vi ∈ L2(Ω) }, H1(Ω)d = { v = (vi) | vi ∈ H1(Ω) },

H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the

canonical inner products given by

(u,v)L2(Ω)d =
∫

Ω

u · v dx, (u,v)H1(Ω)d =
∫

Ω

u · v dx+
∫

Ω

∇u · ∇v dx,

(σ, τ)H =
∫

Ω

σ · τ dx, (σ, τ)H1 =
∫

Ω

σ · τ dx+
∫

Ω

Div σ ·Div τ dx,

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1 , respectively. Here

and below we use the notation

∇v = (vi,j), ε(v) = (εij(v)), εij(v) =
1
2
(vi,j + vj,i) ∀v ∈ H1(Ω)d,
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Div τ = (τij,j) ∀ τ ∈ H1.

For every element v ∈ H1(Ω)d we also write v for the trace of v on Γ and we denote

by vν and vτ the normal and tangential components of v on Γ given by vν = v · ν,

vτ = v − vνν.

Let now consider the closed subspace of H1(Ω)d defined by

V = { v ∈ H1(Ω)d | v = 0 on Γ1 }.

Since meas (Γ1) > 0, the following Korn’s inequality holds:

‖ε(v)‖H ≥ cK ‖v‖H1(Ω)d ∀v ∈ V, (3.1)

where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V we

consider the inner product given by

(u,v)V = (ε(u), ε(v))H (3.2)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.1) that

‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem, (3.1) and (3.2), there exists

a constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (3.3)

We also introduce the following spaces.

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa }, W1 = { D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω) }.

Since meas (Γa) > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈W, (3.4)

where cF > 0 is a constant which depends only on Ω and Γa and ∇ψ = (ψ,i ).

Over the space W , we consider the inner product given by

(ϕ,ψ)W =
∫

Ω

∇ϕ · ∇ψ dx
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and let ‖ · ‖W be the associated norm. It follows from (3.4) that ‖ · ‖H1(Ω) and ‖ · ‖W

are equivalent norms on W and therefore (W, ‖·‖W ) is a real Hilbert space. Moreover,

by the Sobolev trace theorem, there exists a constant c0, depending only on Ω, Γa

and ΓC , such that

‖ζ‖L2(ΓC) ≤ c̃0‖ζ‖W ∀ ζ ∈W. (3.5)

The space W1 is real Hilbert space with the inner product

(D,E)W1 =
∫

Ω

D ·E dx+
∫

Ω

divD · div E dx,

where div = (Di,i), and the associated norm ‖ · ‖W1 .

For every real Hilbert space X we use the classical notation for the spaces

Lp(0, T ;X) and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k ≥ 1 and we also introduce the set

Q = { θ ∈ L∞(0, T ;L2(Γ3)) | 0 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3 }.

Finally, if X1 and X2 are two Hilbert spaces endowed with the inner products (·, ·)X1

and (·, ·)X2 and the associated norms ‖ · ‖X1 and ‖ · ‖X2 , respectively, we denote by

X1×X2 the product space together with the canonical inner product (·, ·)X1×X2 and

the associated norm ‖ · ‖X1×X2 .

In the study of the problem P, we consider the following assumptions on the

problem data.
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The elasticity operator F , the piezoelectric operator E and the electric per-

mittivity operator B satisfy

(a) F : Ω× Sd → Sd,

(b) there exists LF > 0 such that

‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖ ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(c) there exists m > 0 such that

(F(x, ε1)−F(x, ε2), ε1 − ε2) ≥ mF‖ε1 − ε2‖2 ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(d) the mapping x 7→ F(x, ε) is Lebesgue measurable in Ω, for all ε ∈ Sd,

(e) the mapping x 7→ F(x, 0) ∈ H
(3.6)

(a) E : Ω× Sd → Rd.

(b) E(x, τ ) = (eijk(x)τjk) ∀τ = (τ ij) ∈ Sd, a.e. x ∈ Ω.

(c) eijk = eikj ∈ L∞(Ω).

(3.7)



(a) B : Ω× Rd → Rd.

(b) B(x,E) = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(c) bij = bji ∈ L∞(Ω).

(d) There exists mB > 0 such that bij(x)EiEj ≥ mB‖E‖2

∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(3.8)

From the assumptions (3.7) and (3.8), we deduce that the piezoelectric operator E and

the electric permittivity operator B are linear, have measurable bounded components

denoted eijk and bij , respectively, and moreover, B is symmetric and positive definite.

Recall also that the transposed operator E∗ is given by E∗ = (e∗ijk) where

e∗ijk = ekij , and the following equality holds :

Eσ · v = σ · E∗v ∀σ ∈ Sd, v ∈ Rd. (3.9)
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The friction function satisfies :

p : Γ3 × R → R+ verifies

(a) there exists M > 0 such that :

|p (x, r1)− p (x, r2)| ≤M |r1−r2|

for every r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) x 7→ p (x, r) is measurable on Γ3, for every r ∈ R;

(c) p (x, 0) = 0, a.e. x ∈ Γ3.

(3.10)

We note that (3.10) is satisfied in the case of function p given by (2.14).

We also suppose that the body forces and surface tractions have the regularity

f0 ∈W 1,∞(0, T ;L2(Ω)d), f2 ∈W 1,∞(0, T ;L2(Γ2)d), (3.11)

and the densities of electric charges satisfy

q0 ∈W 1,∞(0, T ;L2(Ω)), q2 ∈W 1,∞(0, T ;L2(Γb)), (3.12)

Note that we need to impose assumption (3.12) for physical reasons; indeed, the

foundation is supposed to be insulator and therefore the electric boundary conditions

on Γ3 do not have to change in function of the status of the contact, are the same on

the contact and on the separation zone, and are included in the boundary condition

(2.11).

We define the function f : [0, T ] → V and q : [0, T ] →W by

(f(t),v)V =
∫

Ω

f0(t) · v dx+
∫

Γ2

f2(t) · v da, (3.13)

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da,

for all u,v ∈ V, ψ ∈ W and t ∈ [0, T ], and note that conditions (3.11) and (3.12)

imply that

f ∈W 1,∞(0, T ;V ), q ∈W 1,∞(0, T ;W ). (3.14)

The adhesion coefficients γν , γτ and the limit bound εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3 (3.15)
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while the friction coefficient µ is such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3 (3.16)

and finally, the initial condition β0 satisfies

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.17)

We denote by Uad the convex subset of admissible displacements fields given by

Uad = {v ∈ H1 | v = 0 on Γ1 , vν ≤ 0 on Γ3} . (3.18)

We define the adhesion functional jad : L2(Γ3)× V × V → R by

jad(β,u,v) =
∫

Γ3

(
− γνβ

2Rν(uν)vν + γτβ
2Rτ (uτ ) · vτ

)
da, (3.19)

and the friction functional jfr : L2(Γ3)×H1 × V × V → R by

jfr(β,σ,u,v) =
∫

Γ3

µp(|R(σν)− γνβ
2Rν(uν)|) · |vτ | da. (3.20)

By a standard procedure based on Green’s formula we can derive the following vari-

ational formulation of the contact problem (2.1)-(2.13).

Problem 3.1 (PV ). Find a displacement field u : [0, T ] −→ V , an electric potential

field ϕ : [0, T ] →W and a bonding field β : [0, T ] → L2(Γ3) such that

u(t) ∈ Uad (Fε(u(t)), ε(v − u(t)))H + (E∗∇ϕ(t), ε(v − u(t))H+

+jad(β(t),u(t),v − u(t)) + jfr(β(t),Fε(u(t)) + E∗∇ϕ(t),u(t),v)−

−jfr(β(t),Fε(u(t)) + E∗∇ϕ(t),u(t),u(t)) ≥ (f(t), y − u(t))V ∀v ∈ Uad, t ∈ [0, T ],

(3.21)

(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t)),∇ψ)L2(Ω)d = (q(t), ψ)W , ∀ψ ∈W,∀t ∈ [0, T ],

(3.22)

β̇(t) = −(β(t) (γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa)+ a.e. t ∈ (0, T ), (3.23)

β(0) = β0. (3.24)
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In the rest of this section, we derive some inequalities involving the functionals

jad, and jfr which will be used in the following sections. Below in this section β, β1,

β2 denote elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. on Γ3, u1, u2,v1,v2,

u and v represent elements of V ; σ, σ1, σ2 denote elements of H1 and c is a generic

positive constants which may depend on Ω, Γ1, Γ3, p, γν , γτ and L, whose value may

change from place to place. For the sake of simplicity, we suppress in what follows

the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

First, we remark that the jad is linear with respect to the last argument and

therefore

jad(β,u,−v) = −jad(β,u,v). (3.25)

Next, using (3.19) and the inequalities |Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L,

|β1| ≤ 1, |β2| ≤ 1, for the previous inequality, we deduce that

jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ c

∫
Γ3

|β1 − β2| ‖u1 − u2‖ da,

then, we combine this inequality with (3.3), to obtain

jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ c ‖β1 − β2‖L2(Γ3)‖u1 − u2‖V . (3.26)

Next, we choose β1 = β2 = β in (3.26) to find

jad(β,u1,u2 − u1) + jad(β,u2,u1 − u2) ≤ 0. (3.27)

Similar manipulations, based on the Lipschitz continuity of operators Rν , Rτ show

that

|jad(β,u1,v)− jad(β,u2,v)| ≤ c ‖u1 − u2‖V ‖v‖V . (3.28)

Also, we take u1 = v and u2 = 0 in (3.27), then we use the equalities Rν(0) = 0,

Rτ (0) = 0 and (3.26) to obtain

jad(β,v,v) ≥ 0. (3.29)

Next, we use (3.20), (3.10)(a), keeping in mind (3.3), propriety of a normal regu-

larization operator and the inequalities |Rν(uν)| ≤ L, |β1| ≤ 1, |β2| ≤ 1 and the
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regularity of the operator R we obtain

jfr(β1,σ1,u1,v2)− jfr(β1,σ1,u1,v1) + jfr(β2,σ2,u2,v1)− jfr(β2,σ2,u2,v2) ≤

≤ c20M‖µ‖
L∞(Γ3)(||u2 − u1‖V + c(‖β2 − β1‖L2(Γ3) + ‖σ2−σ1||H1))||v2 − v1‖V .

(3.30)

now, by using (3.10)(a) and (3.16), it follows that the integral in (3.20) is well defined.

Moreover, we have

jfr(β,σ,u,v) ≤ c20M‖µ‖L∞(Γ3)‖(||u‖V ‖+ c(‖σ||H1 + ‖β‖L2(Γ3)))v‖V . (3.31)

The inequalities (3.26)-(3.31) combined with equalities (3.25) will be used in various

places in the rest of the paper.

4. Existence and uniqueness result

Our main result which states the unique solvability of Problem PV , is the

following.

Theorem 4.1. Assume that (3.6)-(3.8), (3.10) and (3.15)-(3.17) hold. Then, there

exists µ0 > 0 depending only on Ω,Γ1,Γ3, F, B and p such that, if ‖µ‖L∞(Γ3) < µ0,

then Problem PV has a unique solution (u, ϕ, β). Moreover, the solution satisfies

u ∈W 1,∞(0, T ;V ), (4.1)

ϕ ∈W 1,∞(0, T ;W ). (4.2)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q. (4.3)

A “quintuple” of functions (u, σ, ϕ, D, β) which satisfy (2.1), (2.2), (3.21)-

(3.24) is called a weak solution of the contact problem P. We conclude by Theorem

4.1 that, under the stated assumptions, Problem P has a unique weak solution. To

precise the regularity of the weak solution we note that the constitutive relations

(2.1) and (2.2), the assumptions (3.6), (3.8) and the regularities (4.1), (4.2) show that

σ∈ W 1,∞([0, T ];H), D ∈ W 1,∞([0, T ];L2(Ω)d); moreover, (3.21), (3.22) combined

with the definitions of f q and functionals jad and jfr yield

Divσ(t) + f0(t) = 0, div D(t) = q0(t) ∀ t ∈ [0, T ].
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It follows now from the regularities (3.11), (3.9) that Divσ ∈W 1,∞(0, T ;L2(Ω)d) and

div D ∈W 1,∞(0, T ;L2(Ω)), which shows that

σ ∈ W 1,∞(0, T ;H1), (4.4)

D ∈ W 1,∞(0, T ;W1). (4.5)

We conclude that the weak solution (u,σ, ϕ,D, β) of the piezoelectric contact problem

P has the regularity (4.1), (4.2), (4.3), (4.4) and (4.5).

The proof of Theorem 4.1 is carried out in several steps and is based on the

following abstract result for variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and the associated

norm ‖ · ‖X , and consider the problem of finding u ∈ X such that

(Au, v − u)X + j(u, v)− j(u, u) > (f, v − u) ∀v ∈ X. (4.6)

To study problem (4.6) we need the following assumptions: The operator A : X → X

is strongly monotone and Lipschitz continuous, i.e.,

(a) There exists mA > 0 such that

(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖2X ∀u1, u2 ∈ X.

(b) There exists LA > 0 such that

‖Au1 −Au2‖X ≤ LA‖u1 − u2‖X ∀u1, u2 ∈ X.

(4.7)

The functional j : X ×X → R satisfies:

(a) j(u, ·) is convex and l.s.c. on X for all u ∈ X.

(b) There exists m > 0 such that

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)

≤ m ‖u1 − u2‖X ‖v1 − v2‖X ∀u1, u2, v1, v2 ∈ X.

(4.8)

Finally, we assume that

f ∈ X (4.9)

The following existence, uniqueness was proved in [28].

Theorem 4.2. Assume that (4.7), (4.8) and (4.9) hold. Then, if m < mA, for all

f ∈ X, there exists a unique solution u ∈ Y of Problem 4.6.
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We return now to proof of theorem 4.1. To this end, we assume in the

following that (3.6)-(3.8), (3.10)-(3.12) and (3.15)-(3.17) hold; below, c is a generic

positive constants which may depend on Ω, Γ1, Γ3, F , p, γν , γτ and L, whose value

may change from place to place. For the sake of simplicity, we suppress in what

follows the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

Let L denotes the closed set of the space C([0, T ];L2(Γ3)) defined by

L =
{
β ∈ C([0, T ];L2(Γ3)) ∩Q | β(0) = β0

}
(4.10)

and let β ∈ L and g ∈ W 1,∞(0, T ;H1) are given. In the first step, we consider the

following variational problem.

Problem 4.3 (Pβg). Find a displacement field u : [0, T ] → V , an electric potential

field ϕ : [0, T ] →W such that

uβg(t) ∈ Uad, (F(ε(uβg(t))), ε(v)− uβg(t))H + (E∗∇ϕβg(t), ε(v − uβg(t)))H+

+jad(β(t),uβg(t),v − uβg(t)) + jfr(β(t), g(t),uβg(t),v)−

−jfr(β(t), g(t),uβg(t),uβg(t)) ≥ (f(t),v − uβg(t))V ∀v ∈ Uad, (4.11)

(B∇ϕβg(t),∇ψ)L2(Ω)d − (Eε(uβg(t)),∇ψ)L2(Ω)d = (q(t), ψ)W ∀ψ ∈W. (4.12)

In order to solve Problem Pβg we consider the product space X = V ×W

endowed with the inner product

(x, y)X = (u,v)V + (ϕ,ψ)W ∀x = (u, ϕ), y = (v, ψ) ∈ X (4.13)

and the associated norm ||.||X . We also introduce the set K ⊂ X and the function

Aβg : [0, T ]×X → X, f [0, T ] → X, defined by

K = Uad ×W, (4.14)
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(Aβg(t)x, y)X = (F(ε(u(t))), ε(v))H + (B∇ϕ(t),∇ψ)L2(Ω)d+ (4.15)

(E∗∇ϕ(t), ε(v))H − (Eε(u(t)),∇ψ)L2(Ω)d (4.16)

+jad(β(t),u(t),v) ∀x = (u, ϕ)V , y = (v, ψ)W ∈ X, t ∈ [0, T ],

jβg(x, y) = jfr(β(t), g(t),u(t),u(t)) ∀x = (u, ϕ), y = (v, ψ) ∈ X (4.17)

f=(f(t), q(t)) ∀t ∈ [0, T ]. (4.18)

We start with the following equivalence result.

Lemma 4.4. The couple (xβg, ϕβg) : [0, T ] → V ×W is a solution to Problem Pβg

if and only if xβg : [0, T ] → X satisfies

xβg ∈ K, (Aβg(t)xβ(t), y − xβg(t))X + jβg(xβg(t), y(t))− (4.19)

−jβg(xβg(t), xβg(t)) > (f(t), y − xβg(t))X ∀y ∈ K, for all t ∈ [0, T ].

Proof. Let xβg = (uβg, ϕβg) : [0, T ] → V ×W be a solution to Problem

Pβg. Let y = (v, ψ) ∈ K and let t ∈ [0, T ]. We use the test function ψ − ϕβg(t)

in (4.12), add the corresponding inequality to (4.11), and use (4.13)-(4.18) to obtain

(4.19). Conversely, assume that xβg = (uβg, ϕβg) : [0, T ] → X satisfies (4.19) and let

t ∈ [0, T ]. For any v ∈ Uad, we take y = (v, ϕβg(t)) in (4.19) to obtain (4.11). Then,

for any ψ ∈W , we take successively y = (uβg, ϕβg(t) + ψ) and y = (uβg, ϕβg(t)− ψ)

in (4.19) to obtain (4.12). �

We use now Lemma 4.4 to obtain the following existence and uniqueness

result.

Lemma 4.5. There exists µ0 > 0 depending only on Ω,Γ1,Γ3,F , B and p such that,

if ‖µ‖L∞(Γ3) < µ0, Problem Pβg has a unique solution (uβg, ϕβg) ∈ C([0, T ];V ×W ).

Proof. We apply Theorem 4.2 where X = V ×W and Y = K = Uad ×W.

Let t ∈ [0, T ].We use (3.6)-(3.9), (3.28), and (3.29) to see that Aβg(t) is a strongly

monotone Lipschitz continuous operator on X and it satisfies

(Aβg(t)x1(t)−Aβg(t)x2(t), x1(t)− x2(t))X > min(mF ,mB)||x1(t)− x2(t)||X . (4.20)
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Using (3.20), we can easily check that jβg(x, .) is a continuous seminorm on X and

moreover, it satisfies (3.30) and(3.31) which shows that the functional jβg satisfies

condition (4.8) on .X. By (3.14) and (4.18) it is easy to see that the function f

defined by (4.18) satisfies f(t) ∈ X.

Let

µ0 =
min(mF ,mB)

c20M
,

where µ, mF , mB, c0 and M are given in (2.8), (3.6), (3.8), (3.3) and (3.10),

respectively. We note that µ0 depends on Ω,Γ1,Γ3,F , B and p. Assume that

‖µ‖L∞(Γ3) < µ0, then

c20M‖µ‖L∞(Γ3) < min(mF ,mB), (4.21)

and note that this smallness assumption involves only the geometry and the electrical

part, and does not depend on the mechanical data of problem.

Using (3.30), (3.31), 4.20, the existence and uniqueness part in Lemma 4.5 is

now a consequence of Lemma 4.4 and theorem 4.2.

For t1, t2 ∈ [0, T ], an argument based on (3.6), (3.28) and (3.30) shows that

||xβg(t2)− xβg(t1)||X ≤ c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M
(||β(t2)− β(t1)||L2(Γ3)+

+||g(t2)− g(t1)||H1 + ||f(t2)− f(t1)||X). (4.22)

The last inequality implies that

||u(t2)− u(t1)||V ≤ c

mF − c20‖µ‖L∞(Γ3)M
(||β(t2)− β(t1)||L2(Γ3) +

+||g(t2)− g(t1)||H1 + ||f(t2)− f(t1)||X). (4.23)

Keeping in mind that f ∈ W 1,∞(0, T ;X) and recall that β ∈ C([0, T ];X), g ∈

W 1,∞(0, T ;H1), it follows now from (4.22) that the mapping t→ xβg = (uβg, ϕβg) :

[0, T ] → X is continuous. �

We assume in what follows that ‖µ‖L∞(Γ3) < µ0 and therefore (4.21) is valid.

In the next step, we use the displacement field uβg obtained in Lemma 4.5, denote

by uβgν , uβgτ its normal and tangential components, and we consider the following

initial value problem.
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Problem 4.6 (Pθ
βg). Find a bonding field θβg: [0, T ] → L2(Γ3) such that

θ̇βg(t) = −
(
θβg(t)

(
γνRν(uβgν(t))2 + γτ‖Rτ (uβgτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ), (4.24)

θβg(0) = β0. (4.25)

We obtain the following result.

Lemma 4.7. There exists a unique solution to Problem Pθ
βg and it satisfies θβg∈

W 1,∞(0, T, L2(Γ3)) ∩Q

Proof. Consider the mapping Fβg : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fβg(t, θ) = −(θ(t)(γνRν((uβg)γ(t))2 + γτ‖Rτ ((uβg)τ (t))‖2)− εa)+, (4.26)

for all t ∈ [0, T ] and θ ∈ L2(Γ3). It follows from the properties of the truncation oper-

ators Rν and Rτ that Fβ is Lipschitz continuous with respect to the second argument,

uniformly in time. Moreover, for any θ ∈ L2(Γ3), the mapping t 7→ Fβg(t, θ) belongs

to L∞(0, T ;L2(Γ3)). Using now a version of Cauchy-Lipschitz theorem, we obtain the

existence of a unique function θβg ∈ W 1,∞(0, T, L2(Γ3)) which solves (4.24), 4.25).

We note that the restriction 0 ≤ β ≤ 1 is implicitly included in the variational problem

PV. Indeed, (3.23) and (3.24) guarantee that β(t) ≤ β0 and, therefore, assumption

(3.17) shows that β(t) ≤ 1 for t ≥ 0, a.e. on Γ3. On the other hand, if β(t0) = 0 at

t = t0, then it follows from (3.23) and (3.24) that β̇(t) = 0 for all t ≥ t0 and therefore,

β(t) = 0 for all t ≥ 0, a.e. on Γ3. We conclude that 0 ≤ β(t) ≤ 1 for all t ∈ [0, T ],

a.e. on Γ3. Therefore, from the definition of the set Q, we find that θβg ∈ Q, which

concludes the proof of Lemma. �

It follows from Lemma 4.7 that for all β ∈ L and g ∈ W 1,∞(0, T,H1) the

solution θβg of Problem Pθ
βg belongs to L ×W 1,∞(0, T, L2(Γ3)), see (4.10).

We denote now by σβg the tensor given by

σβg = Fε(uβg) + E∗∇(ϕβg). (4.27)

From see (3.6), (3.6) and Lemma 4.5, its follows that σβg ∈ C(0, T,H1). Therefore,

we may consider the operator Λ : L×C(0, T, L2(Γ3)×H1) → L×C(0, T, L2(Γ3)×H1)
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given by

Λ(β, g) = (θβg, σβg). (4.28)

The third step consists in the following result.

Lemma 4.8. There exists a unique element (β∗, g∗) ∈ L×C(0, T, L2(Γ3)×H1) such

that Λ(β∗, g∗) = (β∗, g∗).

Proof. Suppose that (βi, gi) are two couples of functions in

L × W 1,∞(0, T, L2(Γ3) × H1) and denote by (ui, ϕi), θi the functions obtained in

Lemmas 4.5 and 4.7, respectively, for (β, g)=(βi, gi), i = 1, 2. Let t ∈ [0, T ]. We use

arguments similar to those used in the proof of (4.22) to deduce that

||xβ1g1(t2)− xβ2g2(t1)||X ≤

≤ c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M
(||β2(t)− β1(t)||L2(Γ3) + ||g2(t)− g1(t)||H1),

(4.29)

which implies

||u2(t)−u1(t))||V ≤ c

mF − c20‖µ‖L∞(Γ3)M
(||β2(t)−β1(t)||L2(Γ3) + ||g2(t)−g1(t)||H1).

(4.30)

On the other hand, it follows from (4.24) and (4.25) that

θi(t) = β0 −
∫ t

0

(θi(s)(γνRν(uiν(s))2 + γτ‖Rτ (uiτ (s))‖2)− εa)+ds (4.31)

and then

||θ2(t)− θ1(t)||L2(Γ3) ≤ c(
∫ t

0

||θ2(s)Rν(u2ν(s))2 − θ1(s)Rν(u1ν(s))2||L2(Γ3)ds+

+
∫ t

0

||θ2(s)||Rτ (u2τ (s))||2 − θ1(s)||Rτ (u1τ (s))||2||L2(Γ3)ds). (4.32)

Using the definition of Rν and Rτ and writing , θ1 = θ1 − θ2 + θ2 we get

||θ2(t)− θ1(t)||L2(Γ3) ≤ c(
∫ t

0

||θ2(s)− θ1(s)||L2(Γ3)ds+
∫ t

0

||u2(s))−u1(s))||L2(Γ3)ds).

(4.33)

By Gronwall’s inequality, it follows that

||θ2(t)− θ1(t)||L2(Γ3) ≤ c

∫ t

0

||u2(s))− u1(s))||L2(Γ3)ds (4.34)
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and, using (3.3), we obtain

||θ2(t)− θ1(t)||L2(Γ3) ≤ c

∫ t

0

||u2(s))− u1(s))||V ds. (4.35)

We now combine (4.30) and (4.35) to see that

||θ2(t)− θ1(t)||L2(Γ3) ≤

≤ c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M

∫ t

0

(||β2(t)− β1(t)||L2(Γ3) + ||g2(t)− g1(t)||H1)ds.

(4.36)

Using now (3.6), (3.7) and (4.27) (4.29) it is easy to see that

‖σβ1g1(t)−σβ2g2(t)||≤
c

min(mF ,mB)−c20‖µ‖L∞(Γ3)M
(||β2(t)−β1(t)‖+‖g2(t)−g1(t)‖).

(4.37)

From (4.28), (4.30) and the last inequality, it results that

||Λ(β1, g1)(t)− Λ(β2, g2)(t)||L2(Γ3)×H1 ≤ N ||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1+

+c
∫ t

0

||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1ds. (4.38)

such that :

N =
c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M
. (4.39)

Using the following notations

I0(t) = ||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1 , (4.40)

I1(t) =
∫ t

0

||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1ds,

Ik(t) =
∫ t

0

∫ sk−1

0

...

∫ s1

0

||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1drds1...dsk−1, ∀k > 2,

and denoting now by Λp the powers of operator Λ, (4.38) and (4.40) imply by re-

currence that

‖Λp(β1, g1)(t)− Λp(β2, g2)(t)‖ ≤ (
p∑

k=0

Ck
p

Np−kMpT p

p!
)) ‖(β1, g1)(t)− (β2, g2)(t)‖

≤ (Np+MT )p

p!
‖(β1, g1)(t)− (β2, g2)(t)‖L2(Γ3)×H1

. (4.41)
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Using the Stirling’s formula, we obtain under the condition N ≤ 1
e

that

lim
p→∞

(Np+MT )p

p!
= 0,

which shows that for p sufficiently large Λp : L × C(0, T,H1)→ L× C(0, T,H1) is a

contraction. Then, we conclude by using the Banach fixed point theorem that Λ has

a unique fixed point (β∗, g∗) ∈ L×C(0, T,H1) such that Λ(β∗, g∗) = (β∗, g∗). Hence,

from (4.28) it results for all t ∈ [0, T ],

(β∗, g∗)(t) = (θβ∗g∗(t), σβ∗g∗(t)). (4.42)

�

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Existence. Let (β∗, g∗) ∈ L × C(0, T,H1) be

the fixed point of Λ and let (u∗, ϕ∗) be the solution of Problem PβgV for (β, g) =

(β∗, g∗), that is, u∗ = uβ∗g∗ and ϕ∗ = ϕβ∗g∗ . Since θβ∗g∗ = β∗, we conclude by

(4.11)), (4.12), (4.24) and (4.25) that (u∗, ϕ∗, β∗) is a solution of Problem PV and,

moreover, β∗ satisfies the regularity (4.3). Also, since β∗ = θβ∗ ∈W 1,∞(0, T ;L2(Γ3)),

σβ∗g∗ ∈ W 1,∞(0, T,H1) and f ∈W 1,∞(0, T ;X), inequality (4.22) implies that the

function x∗ = (u∗, ϕ∗) : [0, T ] → X is Lipschitz continuous; therefore, x∗ belongs

to W 1,∞(0, T ;X), which shows that the functions x∗ and ϕ∗ have the regularity

expressed in (4.1), (4.2).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness

of the fixed point of operator Λ defined by (4.28). Indeed, let (u, ϕ, β) be a another

solution of Problem PV which satisfies (4.1)-(4.3).

We denote by (β, g) ∈W 1,∞(0, T, L2(Γ3)×H1) the couple of function defined by

β̇(t) = −(β(t) (γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa)+ a.e. t ∈ (0, T ), (4.43)

β(0) = β0, (4.44)

g(t) = Fε(u(t)) + E∗∇(ϕ(t)). (4.45)
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It follows from (4.11), (4.12) that (u, ϕ) is a solution to Problem Pβg and, since by

Lemma 4.5 this problem has a unique solution denoted by (uβg, ϕβg), we obtain

u = uβg, (4.46)

ϕ = ϕβg. (4.47)

Then, we replace u = uβg in (3.23) and use the initial condition (3.24) to see that β

is a solution to Problem Pθ
βg. Since by Lemma 4.7 this last problem has a unique

solution denoted by θβg, we find

β = θβg. (4.48)

We use now (4.28), (4.48) and Lemma 4.8, it follows that

β = β∗. (4.49)

On a other hand, it follows from (4.46), (4.45), (4.46), (4.46) and Lemma 4.8 that

g = g∗ (4.50)

The uniqueness part of the theorem is now a consequence of (4.46), (4.47), (4.49) and

the last inequality. �
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