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A MIXED MONTE CARLO AND QUASI-MONTE CARLO METHOD
WITH APPLICATIONS TO MATHEMATICAL FINANCE

ALIN V. ROŞCA

Abstract. In this paper, we apply a mixed Monte Carlo and Quasi-Monte

Carlo method, which we proposed in a previous paper, to problems from

mathematical finance. We estimate the value of an European Call option

and of an Asian option using our mixed method, under different horizont

times. We assume that the stock price of the underlaying asset S = S(t)

is driven by a Lévy process L(t). We compare our estimates with the esti-

mates obtained by using the Monte Carlo and Quasi-Monte Carlo methods.

Numerical results show that a considerable improvement can be achieved

by using the mixed method.

1. Introduction

The valuation of financial derivatives is one of the most important problems

from mathematical finance. The risk-neutral price of such a derivative can be ex-

pressed in terms of a risk-neutral expectation of a random payoff. In some cases, the

expectation is explicitly computable, such as the Black & Scholes formula for pricing

call options on assets modelled by a geometric Brownian motion. However, if we

consider an Asian option, there exists no longer closed form expressions for the price,

and therefore numerical methods are involved. This is the case, even if we consider

call options written on assets with non-normal returns. Among these methods, Monte

Carlo (MC) and Quasi-Monte Carlo (QMC) methods play an increasingly important

role.
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One of the first applications of the MC method in this field appeared in

Boyle [2], who used simulation to estimate the value of a standard European option.

Applications of the QMC method to option pricing problems can be found in [15] and

[12].

Barndorff-Nielsen [1] proposed to model the log returns of asset prices by

using the normal inverse Gaussian (NIG) distribution. This family of non-normal

distributions has proven to fit the semi-heavily tails observed in financial time series

of various kinds extremely well (see Rydberg [21] or Eberlein and Keller [7]). The time

dynamics of the asset prices are modelled by an exponential Lévy process. To price

such derivatives, even simple call and put options, we need to consider the numerical

evaluation of the expectation. Raible [18] has considered a Fourier method to evaluate

call and put options. Alternatives to this method are the MC method or the QMC

method. The QMC method has been applied with succes in financial applications by

many authors (see [8]), and has strong convergence properties. Majority of the work

done on applying these simulation techniques to financial problems was in direction

where one needs to simulate from the normal distribution. One exception is Kainhofer

(see [13]), who proposes a QMC algorithm for NIG variables, based on a technique

proposed by Hlawka and Mück (see [11]) to generate low-discrepancy sequences for

general distributions.

In a recent paper [19], we proposed a mixed MC and QMC method for es-

timating an s-dimensional integral I and we defined a new hybrid sequence that we

called the H-mixed sequence. Other authors who combine the ideas from MC and

QMC methods in estimating multidimensional integrals are G. Ökten (see [16]) and

N. Roşca (see [20]). Using these sequences, we defined a new estimator and proved a

central limit theorem for this estimator. In this paper, we apply our mixed method

to practical problems from financial mathematics. First, we remember the theoreti-

cal background of our method and give some important results. Then, we apply the

H-mixed sequence to valuation of an European Call option and compare the effec-

tiveness of it with that of pseudorandom and low-discrepancy sequences. At the end,

we apply the mixed method to a more difficult problem from finance, namely the
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valuation of Asian options. We also compare numerically our method with the MC

and QMC methods.

2. H-mixed sequences

Let us consider the problem of estimating integrals of the form

I =
∫

[0,1]s
f(x)dH(x), (1)

where f : [0, 1]s → R is the function we want to integrate and H : Rs → [0, 1] is a

distribution function on [0, 1]s. In the continuous case, the integral I can be rewritten

as

I =
∫

[0,1]s
f(x)h(x)dx,

where h is the density function corresponding to the distribution function H.

In the MC method (see [22]), the integral I is estimated by sums of the form

ÎN =
1
N

N∑
k=1

f(xk),

where xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1, are independent identically distributed random

points on [0, 1]s, with the common density function h.

In the QMC method (see [22]), the integral I is approximated by sums of the

form 1
N

∑N
k=1 f(xk), where (xk)k≥1 is a H-distributed low-discrepancy sequence on

[0, 1]s.

Next, the notions of discrepancy and marginal distributions are introduced.

Definition 1 (H-discrepancy). Consider an s-dimensional continuous distribution

on [0, 1]s, with distribution function H. Let λH be the probability measure induced

by H. Let P = (x1, . . . , xN ) be a sequence of points in [0, 1]s. The H-discrepancy of

sequence P is defined as

DN,H(P ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λH(J)
∣∣∣∣,
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where the supremum is calculated over all subintervals J =
∏s

i=1[ai, bi] ⊆ [0, 1]s;

AN (J, P ) counts the number of elements of the set (x1, . . . , xN ), falling into the in-

terval J, i.e.

AN (J, P ) =
N∑

k=1

1J(xk).

1J is the characteristic function of J .

The sequence P is called H-distributed if DN,H(P ) → 0 as N →∞.

The H-distributed sequence P is said to be a low-discrepancy sequence if

DN,H(P ) = O
(
(log N)s/N

)
.

The non-uniform Koksma-Hlawka inequality ([3]) gives an upper bound for

the approximation error in QMC integration, when H-distributed low-discrepancy

sequences are used.

Theorem 2 (non-uniform Koksma-Hlawka inequality). Let f : [0, 1]s → R be a

function of bounded variation in the sense of Hardy and Krause and (x1, . . . , xN ) be

a sequence of points in [0, 1]s. Consider an s-dimensional continuous distribution on

[0, 1]s, with distribution function H. Then, for any N > 0∣∣∣∣∣
∫

[0,1]s
f(x)dH(x)− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ VHK(f)DN,H(x1, . . . , xN ), (2)

where VHK(f) is the variation of f in the sense of Hardy and Krause.

Definition 3. Consider an s-dimensional continuous distribution on [0, 1]s, with den-

sity function h and distribution function H. For a point u =
(
u(1), . . . , u(s)

)
∈ [0, 1]s,

the marginal density functions hl, l = 1, . . . , s, are defined by

hl

(
u(l)
)

=
∫

. . .

∫
︸ ︷︷ ︸
[0,1]s−1

h
(
t(1), . . . , t(l−1), u(l), t(l+1), . . . t(s)

)
dt(1) . . . dt(l−1)dt(l+1) . . . dt(s),

and the marginal distribution functions Hl, l = 1, . . . , s, are defined by

Hl

(
u(l)
)

=
∫ u(l)

0

hl(t)dt.
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We consider s-dimensional continuous distributions on [0, 1]s, with indepen-

dent marginals, i.e.,

H(u) =
s∏

l=1

Hl(u(l)), ∀u = (u(1), . . . , u(s)) ∈ [0, 1]s.

This can be expressed, using the marginal density functions, as follows:

h(u) =
s∏

l=1

hl(u(l)), ∀u = (u(1), . . . , u(s)) ∈ [0, 1]s.

Consider an integer 0 < d < s. Using the marginal density functions, we

construct the following density functions on [0, 1]d and [0, 1]s−d, respectively:

hq(u) =
d∏

l=1

hl(u(l)), ∀u = (u(1), . . . , u(d)) ∈ [0, 1]d,

and

hX(u) =
s∏

l=d+1

hl(u(l)), ∀u = (u(d+1), . . . , u(s)) ∈ [0, 1]s−d.

The corresponding distribution functions are

Hq(u) =
∫ u(1)

0

. . .

∫ u(d)

0

hq

(
t(1), . . . , t(d)

)
dt(1) . . . dt(d),

u = (u(1), . . . , u(d)) ∈ [0, 1]d, (3)

and

HX(u) =
∫ u(d+1)

0

. . .

∫ u(s)

0

hX

(
t(d+1), . . . , t(s)

)
dt(d+1) . . . dt(s),

u = (u(d+1), . . . , u(s)) ∈ [0, 1]s−d. (4)

Next, we introduce the new notion of a H-mixed sequence.

Definition 4 (H-mixed sequence). ([19])

Consider an s-dimensional continuous distribution on [0, 1]s, with distribution

function H and independent marginals Hl, l = 1, . . . , s. Let Hq and HX be the

distribution functions defined in (3) and (4), respectively.

Let (qk)k≥1 be a Hq-distributed low-discrepancy sequence on [0, 1]d, with qk =

(q(1)
k , . . . , q

(d)
k ), and Xk, k ≥ 1, be independent and identically distributed random

vectors on [0, 1]s−d, with distribution function HX , where Xk = (X(d+1)
k , . . . , X

(s)
k ).
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A sequence (mk)k≥1, with the general term given by

mk = (qk, Xk), k ≥ 1, (5)

is called a H-mixed sequence on [0, 1]s.

Remark 5. For an interval J =
∏s

l=1[al, bl] ⊆ [0, 1]s, we define the subintervals

J ′ =
∏d

l=1[al, bl] ⊆ [0, 1]d and J ′′ =
∏s

l=d+1[al, bl] ⊆ [0, 1]s−d (i.e. J = J ′ × J ′′).

Let (mk)k≥1 be a H-mixed sequence on [0, 1]s, with the general term given

by (5).

Based on definitions (1) and (4), the H-discrepancy of the sequence (m1, . . . ,mN )

can be expressed as

DN,H(m1, . . . ,mN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

N∑
k=1

1J(mk)−
s∏

l=1

[Hl(bl)−Hl(al)]
∣∣∣∣,

and the Hq-discrepancy of the sequence (q1, . . . , qN ) is given by

DN,Hq
(q1, . . . , qN ) = sup

J′⊆[0,1]d

∣∣∣∣ 1
N

N∑
k=1

1J′(qk)−
d∏

l=1

[Hl(bl)−Hl(al)]
∣∣∣∣.

The following result gives a probabilistic error bound for the H-mixed se-

quences.

Theorem 6. ([19]) If (mk)k≥1 = (qk, Xk)k≥1 is a H-mixed sequence, then ∀ε > 0 we

have

P
(
DN,H(m1, . . . ,mN ) ≤ ε+DN,Hq (q1, . . . , qN )

)
≥ 1− 1

ε2

1
4N

(
DN,Hq (q1, . . . , qN )+1

)
.

(6)

In order to estimate general integrals of the form (1), we introduce the fol-

lowing estimator.

Definition 7. ([19]) Let (mk)k≥1 = (qk, Xk)k≥1 be an s-dimensional H-mixed se-

quence, introduced by us in Definition 4, with qk = (q(1)
k , . . . , q

(d)
k ) and Xk =

(X(d+1)
k , . . . , X

(s)
k ). We define the following estimator for the integral I:

θm =
1
N

N∑
k=1

f(mk). (7)
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We consider the independent random variables:

Yk = f(mk) = f(q(1)
k , . . . , q

(d)
k , X

(d+1)
k , . . . , X

(s)
k ), k ≥ 1. (8)

We denote the expectation of Yk by

E(Yk) = µk, (9)

and the variance of Yk by

V ar(Yk) = σ2
k. (10)

We assume that

0 < σ2
k < ∞, (11)

and we denote

0 < σ2
(N) = σ2

1 + . . . + σ2
N < ∞. (12)

In what follows, we give and prove an important result, concerning the esti-

mator (7) introduced previously by us.

Theorem 8. Let (mk)k≥1 = (qk, Xk)k≥1 be an s-dimensional H-mixed sequence,

defined in (5). We assume that the integrant f is bounded on [0, 1]s and that the

function

g(x(1), . . . , x(d)) =
∫

[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s),

is of bounded variation in the sense of Hardy and Krause. Then, the estimator θm,

defined in relation (7), is asymptotically unbiased i.e.,

E(θm) → I, as N →∞.

Proof. As (qk)k≥1, with qk = (q(1)
k , . . . , q

(d)
k ), is a Hq-distributed low-discrepancy

sequence on [0, 1]d, it follows that

DN,Hq
(q1, . . . , qN ) → 0, as N →∞. (13)
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Using this and the fact that function g is of bounded variation in the sense of Hardy

and Krause, it follows from Koksma-Hlawka inequality (2) that

1
N

N∑
k=1

g(q(1)
k , . . . , q

(d)
k ) −→

∫
[0,1]d

g(x(1), . . . , x(d))
( d∏

l=1

hl(x(l))
)
dx(1) . . . dx(d)

=
∫

[0,1]d

[ ∫
[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

]

·
( d∏

l=1

hl(x(l))
)
dx(1) . . . dx(d)

=
∫

[0,1]s
f(x(1), . . . , x(s))

( s∏
l=1

hl(x(l))
)
dx(1) · . . . · dx(s) = I, as N →∞.

The expectation of our estimator is

E(θm) = E

(
1
N

N∑
k=1

f(mk)

)
=

1
N

N∑
k=1

E(f(q(1)
k , . . . , q

(d)
k , X

(d+1)
k , . . . , X

(s)
k ))

=
1
N

N∑
k=1

∫
[0,1]s−d

f(q(1)
k , . . . , q

(d)
k , x(d+1), . . . , x(s))

( s∏
l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

=
1
N

N∑
k=1

g(q(1)
k , . . . , q

(d)
k ).

Hence, we get in the end that

lim
N→∞

E(θm) = I.

We call the method of estimating the integral I, based on the estimator θm,

defined in (7), the mixed method.

Proposition 9. ([19]) Let (mk)k≥1 = (qk, Xk)k≥1 be an s-dimensional H-mixed se-

quence. We assume that f is bounded on [0, 1]s and that the functions

f1(x(1), . . . , x(d)) =
∫

[0,1]s−d

(f(x(1), . . . , x(s)))2
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s),

f2(x(1), . . . , x(d)) =
[ ∫

[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

]2
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are of bounded variation in the sense of Hardy and Krause. Then, we have

σ2
(N)

N
−→ L, as N −→∞,

where

L =
∫

[0,1]s
(f(x(1), . . . , x(s)))2

( s∏
l=1

hl(x(l))
)
dx(1) . . . dx(s)−

−
∫

[0,1]d

[ ∫
[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

]2

·
( d∏

l=1

hl(x(l))
)
dx(1) . . . dx(d).

Another important result regarding the estimator defined before is recalled

next.

Theorem 10. ([19]) In the same hypothesis as in Proposition 9 and, in addition,

assuming that L 6= 0, we have

a)

Y(N) =
∑N

k=1 Yk −
∑N

k=1 µk

σ(N)
−→ Y, as N →∞, (14)

where the random variable Y has the standard normal distribution.

b) If we denote the crude Monte Carlo estimator for the integral (1) by θMC ,

then

V ar(θm) ≤ V ar(θMC), (15)

meaning that, by using our estimator, we obtain asymptotically a smaller

variance than by using the classical Monte Carlo method.

3. Application to finance: European options

In this section, we apply our mixed method to a problem from mathematical

finance. The general setting of the problem is presented next. We consider the

situation where the stock price of the underlaying asset S = S(t) is driven by a Lévy

process L(t),

S(t) = S(0)eL(t). (16)
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Lévy processes can be characterized by the distribution of the random variable L(1).

This distribution can be hyperbolic (see [7]), normal inverse gaussian (NIG), variance-

gamma (see [14]), or Meixner distribution.

According to the fundamental theory of asset pricing (see [5] ), the risk-

neutral price of an option, C(0), is given by

C(0) = e−rT EQ(CT (S)), (17)

where CT (S) is the so-called payoff of the derivative, which coincides with its value

at expiration or exercise time T , and Q is an equivalent martingale measure. In this

paper, we are mostly concerned with exponential NIG-Lévy processes, meaning that

L(t) has independent increments, distributed according to a NIG distribution. For

a detailed discussion of the NIG distribution and the corresponding Lévy process,

we refer to Barndorff-Nielsen [1] and Rydberg [21]. In the situation of exponential

NIG-Lévy models, we have an incomplete market, leading to a continuum of equiv-

alent martingale measures Q, which can be used for risk-neutral pricing. Here, we

choose the approach of Raible [18] and consider the measure obtained by Esscher

transform method. This approach is so-called structure preserving, in the sense that

the distribution of L(1) remains in the class of NIG distributions.

In the following, we consider the evaluation of so-called European Call op-

tions, which have to be valued by simulation. The risk-neutral price of such an option

is

C(0) = e−rT EQ(max{S(T )−K, 0}) = e−rT EQ((S(T )−K)+), (18)

where the constant K is called the strike price. If we replace the stock price by (16),

we obtain

C(0) = e−rT EQ((S(0)eL(T ) −K)+). (19)

From practice, we know that the evaluation of the stock price S(t) is made at discrete

times 0 = t0 < t1 < t2 < . . . < ts = T . For simplicity, we focus on regular time

intervals, ∆t = ti − ti−1. We note that

Xi = L(ti)− L(ti−1) = L(ti−1 + ∆t)− L(ti−1) ∼ L(∆t), i = 1, . . . , s,
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are independent and identically distributed NIG random variables with the same dis-

tribution as L(t1). Dropping the discounted factor from the risk-neutral option price,

we get the expected payoff under the Esscher transform measure of the European Call

option

EQ((S(0)eL(T ) −K)+) = E((S(0)e
∑s

i=1 Xi −K)+), (20)

Our purpose is to evaluate the expected payoff (20). For this, we rewrite the

expectation (20) as a multidimensional integral on Rs

I =
∫

Rs

(
S(0)e

∑s
i=1 x(i)

−K
)

+︸ ︷︷ ︸
E(x)

dG(x) =
∫

Rs

E(x)dG(x), (21)

where G(x) =
∏s

i=1 Gi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Gi(x(i)) denotes the

distribution function of the so-called log returns induced by L(t1), with the corre-

sponding density function gi(x(i)). These log increments are independent and NIG

distributed, having a common probability density

fNIG(x;µ, β, α, δ) =
α

π
exp

(
δ
√

α2 − β2 + β(x− µ)
)δK1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
(22)

where K1(x) denotes the modified Bessel function of third type of order 1 (see [17]).

In order to approximate the integral (21), we have to transform it to an

integral on [0, 1]s. We can do this using an integral transformation, as follows.

We first consider the family of independent double-exponential distributions

with the same parameter λ > 0, having the cumulative distribution functions Gλ,i :

R → [0, 1], i = 1, . . . , s,

Gλ,i(x) =

 1
2eλx , x < 0

1− 1
2e−λx , x ≥ 0,

(23)

and the inverses G−1
λ,i : [0, 1] → R, i = 1, . . . , s, given by

G−1
λ,i(x) =

 1
λ log (2x) , x ≤ 1

2

− 1
λ log (2− 2x) , x > 1

2 .
(24)

Next, we consider the substitutions x(i) = G−1
λ,i(1 − y(i)), i = 1, . . . , s, and

then take y(i) = 1− z(i), i = 1, . . . , s.
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The integral (21) becomes

I =
∫

[0,1]s

(
S(0)e

∑s
i=1 G−1

λ,i(z
(i)) −K

)
+︸ ︷︷ ︸

f(z)

dH(z) =
∫

[0,1]s
f(z)dH(z), (25)

where H : [0, 1]s → [0, 1], defined by

H(z) =
s∏

i=1

(Gi ◦G−1
λ,i)(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ [0, 1]s, (26)

is a distribution function on [0, 1]s, with independent marginals Hi = Gi ◦ G−1
λ,i,

i = 1, . . . , s.

In the following, we compare numerically our mixed method with the MC

and QMC methods. As a measure of comparison, we will use the absolute errors

produced by these three methods in the approximation of the integral (25).

The MC estimate is defined as follows:

θMC =
1
N

N∑
k=1

f(x(1)
k , . . . , x

(s)
k ), (27)

where xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1, are independent identically distributed random

points on [0, 1]s, with the common distribution function H defined in (26).

In order to generate such a point xk, we proceed as follows. We first generate

a random point ωk = (ω(1)
k , . . . , ω

(s)
k ), where ω

(i)
k is a point uniformly distributed on

[0, 1], for each i = 1, . . . , s. Then, for each component ω
(i)
k , i = 1, . . . , s, we apply the

inversion method (see [4] and [6]), and obtain that H−1
i (ω(i)

k ) = (Gλ,i ◦ G−1
i )(ω(i)

k )

is a point with the distribution function Hi. As the s-dimensional distribution with

the distribution function H has independent marginals, it follows that xk = ((Gλ,1 ◦

G−1
1 )(ω(1)

k ), . . . , (Gλ,s ◦G−1
s )(ω(s)

k )) is a point on [0, 1]s, with the distribution function

H. As we can see, in order to generate non-uniform random points on [0, 1]s, with

distribution function H, we need to know the inverse of the distribution function

of a NIG distributed random variable or, at least an approximation of it. As the

inverse function is not explicitly known, an approximation of it is needed in our

simulations. In order to obtain an approximation of the inverse, we use the Matlab
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function ”niginv” as implemented by R. Werner, based on a method proposed by K.

Prause in his Ph.D. dissertation [17].

The QMC estimate is defined as follows:

θQMC =
1
N

N∑
k=1

f(x(1)
k , . . . , x

(s)
k ), (28)

where x = (xk)k≥1 is a H-distributed low-discrepancy sequence on [0, 1]s, with

xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1.

In order to generate such a sequence, we apply a method proposed by Hlawka

and Mück in [11]. In their method, they create directly H-distributed low-discrepancy

sequences, where H can be any distribution function on [0, 1]s, with density function

h, which can be factored into a product of independent, one-dimensional densities.

The method is based on the following theoretical result.

Theorem 11. ([10]) Consider an s-dimensional continuous distribution on [0, 1]s,

with distribution function H and density function h(u) =
∏s

j=1 hj(u(j)), ∀u =(
u(1), . . . , u(s)

)
∈ [0, 1]s. Assume that hj(t) 6= 0, for almost every t ∈ [0, 1] and

for all j = 1, . . . , s. Furthermore, assume that hj, j = 1, . . . , s, are continuous on

[0, 1]. Denote by Mf = supu∈[0,1]s f(u). Let ω = (ω1, . . . , ωN ) be a sequence in [0, 1]s.

Generate the sequence x = (x1, . . . , xN ), with

x
(j)
k =

1
N

N∑
r=1

[
1 + ω

(j)
k −Hj

(
ω(j)

r

)]
=

1
N

N∑
r=1

1
[0,ω

(j)
k ]

(
Hj

(
ω(j)

r

))
, (29)

for all k = 1, . . . , N and all j = 1, . . . , s, where [a] denotes the integer part of a. Then

the generated sequence x has a H-discrepancy of

DN,H(x1, . . . , xN ) ≤ (2 + 6sMf )DN (ω1, . . . , ωN ).

As our distribution function H can be factored into independent marginals,

and has the support on [0, 1]s, we can apply directly the above theorem, to generate

H-distributed low-discrepancy sequences. During our experiments, we employed as

low-discrepancy sequences ω = (ωk)k≥1 on [0, 1]s, the Halton sequences (see [9]).

All points constructed by the Hlawka-Mück method are of the form i/N ,

i = 0, . . . , N , in particular some elements of the sequence x = (x1, . . . , xN ) might
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assume a value of 0 or 1. A value of 1 is a singularity of the function f(x), due to

the logarithm from the definition of G−1
λ,i(x), which becomes unbounded if x = 1.

Hence, the sequence constructed with Hlawka-Mück method is not directly suited

for unbounded problems. To overcome this problem, Kainhofer (see [13]) suggests

to define a new sequence, in which the value 1 is replaced by 1/N , where N is the

number of points in the set. This slight modification of the sequence is shown to have

a minor influence, as the transformed set does not loose its low-discrepancy and can

be used for QMC integration.

The estimate proposed by us earlier is:

θm =
1
N

N∑
k=1

f(q(1)
k , . . . , q

(d)
k , X

(d+1)
k , . . . , X

(s)
k ), (30)

where (qk, Xk)k≥1 is an s-dimensional H-mixed sequence on [0, 1]s.

In order to obtain such a H-mixed sequence, we first construct the Hq-

distributed low-discrepancy sequence (qk)k≥1 on [0, 1]d, using the Hlawka-Mück

method (the distribution function Hq was defined in (3)). Next, we generate the

independent and identically distributed random points xk, k ≥ 1 on [0, 1]s−d, with

the common distribution function HX , using the inversion method (the distribution

function HX was defined in (4)). Finally, we concatenate qk and xk for each k ≥ 1,

and get our H-mixed sequence on [0, 1]s.

In our experiments, we used as low-discrepancy sequences on [0, 1]d, for the

generation of H-mixed sequences, the Halton sequences (see [9]).

We suppose that the parameters of the NIG-distributed log-returns under the

equivalent martingale measure given by the Esscher transform are given by

µ = 0.00079 ∗ 5, β = −15.1977, α = 136.29, δ = 0.0059 ∗ 5, (31)

and they are the same as in Kainhofer (see [13]). We observe that these parameters

are relevant for daily observed stock price log-returns (see [21]). As the class of NIG

distributions is closed under convolution, we can derive weekly stock prices by using

a factor of 5 for the parameters µ and δ. We suppose further that the initial stock

price is S(0) = 100 and the risk-free annual interest rate is r = 3.75%.
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The option is sampled at weekly time intervals. We also let the option to

have maturities of 12 and 20 weeks. Hence, our problem is a 12 and 20-dimensional

integral, respectively, over the payoff function.

We are going to compare the three estimates in terms of their absolute error,

where the ”exact” option price is obtained as the average of 10 MC simulations, with

N = 100000 for the initial integral (21).

In our tests we have considered the following dimensions of the transformed

integral (25) on [0, 1]s: s = 12, 20. The MC and H-mixed estimates are the mean

values of 10 independent runs, while the QMC estimate is the result of a single run.

The results are presented in two tables, each table containing the number of samples

N , which varies from 5000 to 8500 with a step of 500, and the absolute error of the

three estimates.

N Absolute error MC Absolute error QMC Absolute error Mixed Method

5000 0.014731 0.012385 0.007676

5500 0.004485 0.016085 0.003780

6000 0.009268 0.011866 0.001892

6500 0.020887 0.014721 0.002547

7000 0.027395 0.014732 0.008411

7500 0.006316 0.012404 0.017385

8000 0.015027 0.010519 0.012538

8500 0.009207 0.010140 0.007248

Table 1: European Call Option. Case d = 4 and s = 12.

The numerical results for s = 12 and d = 4 are presented in Table 1. The

results produced by our H-mixed sequence are much better than the ones obtained

by using pseudorandom or low-discrepancy sequences, in almost all situations.
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N Absolute error MC Absolute error QMC Absolute error Mixed Method

5000 0.006381 0.049304 0.004311

5500 0.030035 0.039222 0.008018

6000 0.017018 0.042674 0.019373

6500 0.004735 0.041674 0.012044

7000 0.023534 0.038581 0.013131

7500 0.020561 0.030509 0.001833

8000 0.028440 0.027873 0.008792

8500 0.012737 0.032972 0.007264

Table 2: European Call Option. Case d = 7 and s = 20.

To increase the difficulty of the problem, we increase the dimension of the

integral to s = 20. Table 2 displays the results we get for s = 20 and d = 7.

From this simulations, we see again that the H-mixed sequence outperforms both the

pseudorandom and low-discrepancy sequences, for almost all sample sizes N . The

absolute error produced by our H-mixed sequence is smaller than the one produced

by the low-discrepancy sequence, in all situations.

As a general conclusion for this option pricing problem, we can say that by the

use of H-mixed sequences, we obtain increasing advantages over the classical pseudo-

random and low-discrepancy sequences, for relatively high dimensions and moderate

sample sizes.

4. Application to finance: Asian options

In this section, we consider an Asian option pricing problem. We compare

numerically our mixed method with the MC and QMC methods, when they are

applied to so-called (discrete sampled) Asian options driven by the asset dynamics

S(t), as defined in (16). The general setting remains the same as in the previous

section, but the payoff function is changed. The payoff of an Asian call option is

defined as

CT (S) =
(1

s

s∑
i=1

S(ti)−K
)

+
= max

{1
s

s∑
i=1

S(ti)−K, 0
}

, (32)
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with 0 = t0 < t1 < t2 < . . . < ts = T . The constant K ≥ 0 is called the strike price.

Hence, we get the following integration problem:

I =
∫

Rs

( S(0)
s

s∑
i=1

e
∑i

j=1 x(j)
−K

)
+︸ ︷︷ ︸

A(x)

dG(x) =
∫

Rs

A(x)dG(x), (33)

where G(x) =
∏s

i=1 Gi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Gi(x(i)) denotes the

distribution function of the so-called log returns induced by L(t1), with the corre-

sponding density function gi(x(i)). These log increments are independent and NIG

distributed, having the common density function defined in (22).

In order to approximate the integral (33), we have to transform it to an

integral on [0, 1]s. We can do this in a similar way as we did for European Call

options, in the previous section. In the end, we get the following integration problem

on [0, 1]s:

I =
∫

[0,1]s

(S(0)
s

s∑
i=1

e
∑i

j=1 G−1
λ,i(z

(j)) −K
)

+︸ ︷︷ ︸
f(z)

dH(z) =
∫

[0,1]s
f(z)dH(z), (34)

where H : [0, 1]s → [0, 1], defined by

H(z) =
s∏

i=1

(Gi ◦G−1
λ,i)(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ [0, 1]s, (35)

is a distribution function on [0, 1]s, with independent marginals Hi = Gi ◦ G−1
λ,i,

i = 1, . . . , s.

Next, we compare numerically our estimator θm, with the estimators obtained

using the MC and QMC methods. All three estimators θm, θMC and θQMC , and the

corresponding sequences are defined in the previous section. The function f(z) is

defined in relation (34). As a measure of comparison, we will use the absolute errors

produced by these three methods, in the approximation of the integral (34).

We suppose that the parameters of the NIG-distributed log-returns under

the equivalent martingale measure given by the Esscher transform are the same as in

(31). We assume that the initial stock price is S(0) = 100, and the risk-free annual

interest rate is r = 3.75%.
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For our mixed method and QMC estimate, we use a Halton sequence as low-

discrepancy sequence on [0, 1]s. The Asian call option is sampled weekly. We also let

the option to have maturities of 12 and 20 weeks. Hence, our problem is a 12 and

20-dimensional integral, respectively, over the payoff function.

We are going to compare the three estimates in terms of their absolute error,

where the ”true” price is obtained as the average of 10 MC simulations, with N =

100000. The MC and H-mixed estimates are the mean values of 10 independent runs,

while the QMC estimate is the result of a single run. The results are presented in

two tables, each table containing the number of samples N , which varies from 4000

to 7000 with a step size of 500, and the absolute error of the three estimates.

N Absolute error MC Absolute error QMC Absolute error Mixed Method

4000 0.004833 0.000723 0.000690

4500 0.003060 0.001083 0.000977

5000 0.001095 0.000380 0.001653

5500 0.000293 0.000618 0.000599

6000 0.011389 0.001482 0.000898

6500 0.001733 0.003187 0.000218

7000 0.008720 0.001582 0.000047

Table 3: Asian Option. Case d = 4 and s = 12.

In Table 3 we present the results obtained for s = 12 and d = 4. The H-

mixed sequence gives excellent estimates for almost all N , clearly dominating both

the pseudorandom and low-discrepancy sequences.
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N Absolute error MC Absolute error QMC Absolute error Mixed Method

4000 0.036868 0.014541 0.004318

4500 0.007101 0.011003 0.016654

5000 0.002396 0.009723 0.012004

5500 0.016070 0.008897 0.000818

6000 0.004666 0.008920 0.000003

6500 0.017100 0.009541 0.003007

7000 0.010705 0.009437 0.002776

Table 4: Asian Option. Case d = 7 and s = 20.

The estimates presented in Table 4 are the results of the simulations for a

higher dimensional problem, with s = 20 and d = 7. Again, the H-mixed method

outperforms the conventional MC and QMC methods, in almost all situations.

We can conclude that our mixed method can give considerable improvements

over the MC and QMC methods, in estimating high dimensional integrals, which we

encounter in problems from financial mathematics, such as valuation of Asian options

and European options.
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