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A STOCHASTIC MODEL FOR THE GROWTH
OF CANCER TUMORS

HANNELORE LISEI∗ AND DAVID JULITZ

Abstract. In this paper we study a stochastic model for the behavior of

cancer tumors, described by a stochastic differential equation with multi-

plicative noise term. We consider that the number of tumor cells is influ-

enced by the drug therapy and by random perturbations. We study the

existence of the solution process, as well as its behavior in the framework

of stochastic inclusion problems and random dynamical systems (long time

behavior). Computer simulations are also given.

1. Introduction

Different types of mathematical models of cancer progression and treatment

have already been constructed. They simulate important elements of the complex

process of tumor growth and response to the therapy, the effects and interactions

between tumor cells and immune cells. For example, there are many papers written

on the subject of optimal control for mathematical models in cancer chemotherapy,

such as J.M. Murray [17], K.R. Fister and J.C. Panetta [11], L.G. de Pillis and A.E.

Radunskaya [8], [9], L. G. Hanin, S. T. Rachev and A. Yu. Yakovlev [13] etc. In

the last years, stochastic growth models for cancer cells were developed, we mention

the papers of W.Y. Tan and C.W. Chen [20], N. Komarova [15], G. Albano and V.

Giorno [1], L. Ferrante, S. Bompadre, L. Possati and L. Leone [10], A. Boondirek,
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Y. Lenbury, J. Wong-Ekkabut, W. Triampo, I.M. Tang, P. Picha [3]. Also stochastic

optimal control problems in chemotherapy were investigated by A.J. Coldman and

J.M. Murray [6].

Following the models developed by G. W. Swan [19] and continued by W. Krabs

[16] we complete their results by studying a growth model for tumor cells under the

influence of random perturbations. We especially study a growth model with multi-

plicative noise term for which we investigate the existence of the solution (Section 2).

We consider that the size of the tumor is controlled by the function which is the drug

dose and rewrite our control problem as a differential inclusion problem (Section 3).

Furthermore we investigate the long time behavior of our model in the framework

of random dynamical systems (Section 4). At the end we also give some computer

simulations of the solutions and the solution-tube for different possible functions for

the drug exposure (Section 5). This article is the starting point for further research

on stochastic control problems in cancer growth models.

2. The stochastic model

We denote by p(t) the number of cancerous tumor cells at time t > 0. In

the book of G.W. Swan [19] the following model for the number of tumor cells in the

absence of drugs is studied: dp(t) = λ ln
(

µ

p(t)

)
p(t)dt, p(0) = p0 > 0, where λ, µ > 0

are parameters. In [19] the following controlled cancer tumor growth model under

influence of drugs is given

dp(t) =
(

λ ln
(

µ

p(t)

)
−G(v(t))

)
p(t)dt, p(0) = p0 > 0, (1)

where v(t) > 0 is the dose of the drug at time t, G(v(t)) is the destroying rate per

tumor cell and time unit. W. Krabs uses in [16] the following monotone increasing

and bounded function for G:

G(v) =
k1v

k2 + v
, (2)
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where k1, k2 > 0 are constants. The optimal control problem of finding the control

function v > 0 for which the drug exposure on the body is minimal is studied in [16]

T∫
0

v(t) → min

p is a solution of (1) for t ∈ [0, T ]

p(T ) = pT ,

where the values T > 0 and pT ∈ (0, µ) are given. It is showed that the optimal

control v has the form v(t) =

√
k1k2

D
eλt − k2, t ∈ [0, T ], where D is a parameter. If

k1 > D k2, then it is assured that v(t) > 0 for all [0, T ].

The aim of our paper is to generalize the model (1) to the stochastic case:

Let
(
Ω,F , (Ft)t≥0, P

)
be a filtered probability space and let (W (t))t≥0 be a standard

Wiener process adapted to the filtration (Ft)t≥0. We perturb (1) by a multiplicative

noise term and consider the following stochastic differential equation with stochastic

Itô integral

p(t) = p0 +

t∫
0

(
λ ln

(
µ

p(s)

)
−G(v(s))

)
p(s)ds + σ

t∫
0

p(s)dW (s), t ≥ 0, (3)

where p0 > 0 and σ ∈ R is a parameter. We assume that G, v : R+ × Ω → R+ are

processes that are measurable, adapted to the filtration (Ft)t≥0 and are a.s. locally

bounded.

Theorem 1. Equation (3) has a unique solution which has the following explicit form

p(t) = (p0)e−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds + σ

t∫
0

eλ(s−t)dW (s)

 (4)

for a.e. ω ∈ Ω and all t ≥ 0.

Proof. We consider two geometric Brownian motions (see [14, pg. 349]) starting at

x0 = 1 given by B(t) = exp {σW (t)} and β(t) = exp {−σW (t)}, t ≥ 0, which are the
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solutions of the following linear equations

B(t) = 1 +
σ2

2

t∫
0

B(s)ds + σ

t∫
0

B(s)dW (s), t ≥ 0, (5)

β(t) = 1 +
σ2

2

t∫
0

β(s)ds− σ

t∫
0

β(s)dW (s), t ≥ 0. (6)

First, we prove that the solution of (3) is unique: Let (p(t))t≥0 be a solution of (3).

Applying the Itô formula for Z := p · β (see [14, Theorem 3.6]) we obtain from (3)

and (6) that

Z(t) = p0 +

t∫
0

(
λ ln

(
µ

Z(s)

)
−G(v(s)− λσW (s))

)
Z(s)ds, t ≥ 0. (7)

We denote Y := lnZ, then (Y (t))t≥0 satisfies the equation

Y (t) = ln(p0) +

t∫
0

(λ ln(µ)−G(v(s))− λσW (s)− λY (s)) ds, t ≥ 0. (8)

Obviously, the solution of (8) is unique (it is linear in Y ), hence the solution of (3)

must also be unique. Now, we prove the existence of the solution of (3). Note, that

the solution of (8) has the explicit form

Y (t) = e−λt ln(p0) +

t∫
0

eλ(s−t) (λ ln(µ)−G(v(s))− λσW (s)) ds, t ≥ 0.

Then, Z(t) = exp{Y (t)} satisfies equation (7). By using the Itô formula for Z ·B (see

[14, Theorem 3.6]) we obtain from (7) and (5) that Z · B is a solution of (3). From

the uniqueness of the solution of (3) it follows that

p(t) = Z(t)B(t) = exp {Y (t) + σW (t)}

= exp

e−λt ln(p0) +

t∫
0

eλ(s−t) (λ ln(µ)−G(v(s))− λσW (s)) ds + σW (t)

 .

By calculations we get that the explicit form for p is given in (4).
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Remark 1. We introduce the set Ω∗ ⊂ Ω with P (Ω∗) = 1 such that for all ω ∈ Ω∗

it hold:

• eλtW (t) =

t∫
0

eλsdW (s) + λ

t∫
0

eλsW (s)ds for all t ≥ 0 ;

• W has sublinear growth at ±∞, i.e. lim
t→±∞

W (t)
t

= 0 for all ω ∈ Ω∗;

• the Ornstein-Uhlenbeck process

O(t) = σ

t∫
0

eλ(s−t)dW (s) for all t ≥ 0, (9)

is well defined. ♦

Remark 2. Without loss of generality, we can say that (4) holds for all ω ∈ Ω∗.

Since in the expression (4) appears the Ornstein-Uhlenbeck process
(
O(t)

)
t≥0

which

is a zero-mean Gaussian process with variance ν(t) = Var(O(t)) =
σ2

2λ
(1− e−2λt), we

can compute the expected number of tumor cells at time t > 0 by

E(p(t)) = (p0)e−λt

µ1−e−λt

E

exp

−
t∫

0

eλ(s−t)G(v(s))ds + O(t)


 .

If, G and v are independent of the process W , then

E(p(t)) = (p0)e−λt

µ1−e−λt

E

exp

−
t∫

0

eλ(s−t)G(v(s))ds


 E(exp{O(t)}).

But, E(exp{O(t)}) = exp
{

ν(t)
2

}
, then in this case we obtain

E(p(t)) = (p0)e−λt

µ1−e−λt

exp
{

σ2

4λ
(1− e−2λt)

}
E

exp

−
t∫

0

eλ(s−t)G(v(s))ds


 .

Moreover, if G and v do not depend on ω, then

E(p(t)) = (p0)e−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds +
σ2

4λ
(1− e−2λt)

 ,
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while the variance is given by

Var(p(t)) = (p0)2e−λt

µ2(1−e−λt) exp

−2

t∫
0

eλ(s−t)G(v(s))ds + ν(t)

 (exp {ν(t)} − 1).

♦

3. Random and stochastic differential inclusions

We want to investigate (3) in the framework of differential inclusions (DIs),

which are roughly speaking given by corresponding set valued differential equations.

Notations: Let (X, d) be a complete metric space.

• We denote by K(X) the set of all nonempty compact and convex subsets of X.

• In the set valued setting we use an appropriate concept for distance, namely the

Hausdorff semi metric d∗H(·, ·) and the Hausdorff metric dH(·, ·). The Hausdorff semi

metric for A, B ⊂ X is given by d∗H(A,B) = sup
a∈A

inf
b∈B

d(a, b). Note, that d∗H(·, ·) is

only a semi metric, because in general d∗H(A,B) 6= d∗H(B,A). We obtain the full

metric by dH(A,B) := max{d∗H(A,B), d∗H(B,A)}.

• For A, B ⊂ X and α ∈ R we define A + αB := {a + αb | a ∈ A, b ∈ B}.

• For x ∈ X and ε > 0 we denote by Bε(x) := {y ∈ X|d(x, y) < ε}, the ε-ball for x.

Such as sets are characterized by their elements, set valued mappings are

characterized by selections.

Definition 1. Let F : R+ × R 7→ K(R). A selection is a scalar valued mapping

f : R+ ×X → X with f(t, ·) ∈ F (t, ·) for a.e. t ∈ [0, T ].

Let (Ω,F , P) be a probability space. If we introduce DIs driven by random

or stochastic processes over (Ω,F , P), then we obtain random differential inclusions

(RDI) and also stochastic differential inclusions (SDI) of Itô type having the form

dϕ(t)
dt

∈ F (θtω, ϕ(t)), t ≥ 0, ϕ(0) = x0 ∈ R (RDI) (10)

44



A STOCHASTIC MODEL FOR THE GROWTH OF CANCER TUMORS

where θ is a metric dynamical system (see Definition 2 in Section 4) and

dϕ(t) ∈ F (t, ϕ(t))dt + g(ϕ(t))dW, t ≥ 0, ϕ(0) = x0 ∈ R (SDI) (11)

respectively. Equation (11) is the symbolic notation for

ϕ(t) ∈ x0 +

t∫
0

F (ϕ(s)) ds +

t∫
0

g(ϕ(s))dW (s), (12)

where the first integral is the so-called Aumann integral, defined as the set of the form

t∫
0

F (s, ·) ds =


t∫

0

f(s, ·) ds | f ∈ I(F ) for t ∈ [0, T ]


with the space of selectors

I(F ) :=
{

f : [0, T ]× R 7→ R | f(·, x) ∈ L1[0, T ]∀x ∈ R,

f(t, ·) ∈ F (t, ·) for a. e. t ∈ [0, T ]
}

and the second integral in (12) is a stochastic integral of Itô type.

We can interpret (3) as a SDI by writing, for example,

dϕ(t) ∈ F (ϕ(t))dt + g(ϕ(t))dW (t), t ≥ 0, ϕ(0) = x0 > 0, (13)

where F : R 7→ K(R) is the set valued mapping given by

F (ϕ(t)) :=
(

λ ln
(

µ

ϕ(t)

)
− [0, ρ]

)
ϕ(t) (14)

g(ϕ(t)) := σϕ(t) and ρ > 0 is a parameter.

We replaced G(v) by the set [0, ρ]. In our model v(t) > 0 denotes the dose of the

drug at time t, while G(v) > 0 denotes the destroying rate of the cancer cells. It

seems reasonable that G has to be a monotone increasing and bounded function (see

[16]). In the special case mentioned in (2) we have lim
v→∞

G(v) = lim
v→∞

k1 v

k2 + v
= k1.

Therefore, we can take, for example, ρ := k1.

Real therapy protocols are somehow periodic, drugs are given in periodic time inter-

vals, and then a while no drugs are given, in order to allow the physical body of the
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patient to recover after the drug exposure. The following type of control for the set

valued mapping for the SDI (13) takes this fact better into account:

F (ϕ(t)) :=
(

λ ln
(

µ

ϕ(t)

)
− [0, ρ]

(
1 + sgn(sin(αt + β))

2

))
ϕ(t) (15)

with α, β ∈ R are the parameter for the velocity and shifting of the protocol and

sgn(x) = −1, if x < 0 and sgn(x) = 1, if x ≥ 0.

Another further generalization is to consider the parameter ρ (i.e. the maximal de-

stroy rate) as a stationary stochastic process (ω, t) → ρ(θtω).

4. Random dynamical systems

We give now a brief introduction into the theory of random dynamical sys-

tems. A complete survey can be found in [2]. Random dynamical systems are dynam-

ical systems under random influences. Formally, they are given by two ingredients:

a model for the underlying noise (the metric dynamical system) and a model, which

describes the dynamics under the influence of that noise (the cocycle).

Definition 2. Let (Ω,F , P) be a probability space. A metric dynamical system (MDS)

θ : R × Ω 7→ Ω is a (B(R)⊗F ,F)-measurable flow that fulfills the group property

θ0 = id , θt+s = θt ◦ θs for all s, t ∈ R. Moreover, we suppose that (θt)t∈R is

continuous, i.e. (t, ω) 7→ θtω is continuous, and it is measure preserving, i.e. θtP = P,

for all t ∈ R.

Example 1. A well-known example of a MDS, which appears if we deal with sto-

chastic differential equations, is the following: Let (Wt)t∈R be a 1-dimensional two-

sided standard Wiener process over the canonical Wiener space (Ω̃, F̃ , P̃), where

Ω̃ = {ω ∈ C(R, R) : ω(0) = 0}, F̃ is the Borel σ-algebra of Ω̃ and P̃ is the Wiener

measure. Then, the Wiener shift θtω(·) = ω(·+ t)− ω(t) defines a MDS. ♦

From now on let θ be an MDS over the probability space (Ω,F , P). Let (X, d) be a

complete metric space.

Definition 3. We call (φ, θ) a random dynamical system (RDS) if

φ : R+ × Ω × X 7→ X is a (B(R+)⊗F ⊗ B(X),B(X))-measurable mapping
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and satisfies for all s, t ∈ R+, ω ∈ Ω and x ∈ X the perfect cocycle property

φ(0, ω, x) = x, φ(t + s, ω, x) = φ
(
t, θsω, φ(s, ω, x)

)
.

An RDS can be generated for example by random differential equations or

stochastic differential equations. An overview of typical generators of RDSs can be

found in [2] and [5].

Definition 4. A random variable x∗ is called a random fixed point for a random

dynamical system (φ, θ), if φ(t, ω, x∗(ω)) = x∗(θtω) for all ω ∈ Ω and t ∈ R+. We

say that a random fixed point x∗ is stable, if it satisfies the pullback convergence

relation lim
t→∞

φ(t, θ−tω, x) = x∗(ω) for all x ∈ X and all ω ∈ Ω.

The concept of pullback convergence was introduced in the 1990s by Crauel

and Flandoli [7], Flandoli and Schmalfuß [12], and Schmalfuß [18].

We study now the long time behavior of the solution p of equation (3) for

different types of control functions v:

I. We consider the probability space (Ω,F , P) to be the Wiener space (Ω̃, F̃ , P̃)

and the MDS θ the Wiener shift given in Example 1. Let X = R+ be the phase space.

We define for all x ∈ R+ and all t ≥ 0 the function

φ(t, ω, x) = xe−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds + σ

t∫
0

eλ(s−t)dW (s)

 , ∀ω ∈ Ω∗

(16)

φ(t, ω, x) = x, ∀ω ∈ Ω \ Ω∗,

where Ω∗ ⊂ Ω is the set of measure 1 that satisfies the properties from Remark 1.

Assume that G ◦ v is a strictly stationary process, i.e. G ◦ v(s, θtω) =

G◦v(s+ t, ω) for all s, t ∈ R, ω ∈ Ω, which is also bounded G◦v(t, ω) < M for all t ≥

0 and a.e. ω ∈ Ω.

One can check by calculations that in our case (φ, θ) is a RDS over (Ω,F , P) (the
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Wiener space). In these calculations it is essential that the MDS θ is measure pre-

serving with respect to P .

Example 2. Stationary processes G ◦ v are obtained for example when G is a non-

random continuous function G : R → R+ which is continuous and v(t, ω) := z(θtω)

t ∈ R, ω ∈ Ω̃, where z is a positive random variable. In our simulations we take

v(t, ω) := exp{−z∗(θtω)}, where z∗(ω) = −σλ

∫ 0

−∞
eλsW (s)ds is the random fixed

point of the Ornstein-Uhlenbeck equation dO(t) = λO(t)dt + σdW (t), t ≥ 0. For G

we take the function given in (2). ♦

Theorem 2. The solution of equation (3) has the following long time behavior: for

each x ≥ 0 it holds

lim
t→∞

φ(t, θ−tω, x) = µ exp
{
−

∫ 0

−∞
eλs

(
G(v(s)) + σλW (s)

)
ds

}
(17)

for all ω ∈ Ω∗.

Proof. For ω ∈ Ω∗ we take ω 7→ θ−tω in (16) and analyze the expressions occurring

in the formula. We have

lim
t→∞

∫ t

0

eλ(s−t)G(v(s, θ−tω))ds = lim
t→∞

∫ 0

−t

eλsG(v(s + t, θ−tω))

=
∫ 0

−∞
eλsG(v(s, ω))ds.

For the expression containing the Ornstein-Uhlenbeck process we compute as follows:

Using the notation introduced in (9) and the Wiener shift operator θ given in Exam-

ple 1, we obtain e−λtW (−t) =
1
σ

O(t, θ−tω) + λ

0∫
−t

eλsW (s)ds for all t ≥ 0, ω ∈ Ω∗.

We take into consideration that the process W has sublinear growth (see Remark 1),

therefore,

lim
t→∞

O(t, θ−tω) = −σλ

0∫
−∞

eλsW (s)ds, for all ω ∈ Ω∗. (18)

The integral from the right-hand side of the above relation exists. Finally, we take

ω 7→ θ−tω in (16), then t →∞ and use (18) to get (17).
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By calculations it is easy to prove that by the above result we obtained the stable

random fixed point for (φ, θ)

x∗(ω) =


µ exp

{
−

∫ 0

−∞
eλs

(
G(v(s)) + σλW (s)

)
ds

}
for ω ∈ Ω∗

µ for ω ∈ Ω \ Ω∗

which acts as a random attractor for our RDS. This means that other solutions are

attracted by this random fixed point. Moreover, any ε-neighborhood Bε(x∗), ε > 0

absorbs any other solution and any bounded solution set in finite time. Note, for

every time t we have a finite well defined random variable.

Theorem 3. The solutions of the SDI (13) satisfies the following property

φρ(t, ω, x) ≤ ϕ(t, ω, x) ≤ φ0(t, ω, x) for all x > 0, ω ∈ Ω∗, where φ0 and φρ are

the cocycles corresponding to G ◦ v ≡ 0 and G ◦ v ≡ ρ, respectively.

Proof. The solution ϕ of (13) exists, since for each selection f of F (defined in (14))

the corresponding stochastic differential equation admits a solution ϕ(t, ω, x) given in

(16) by φ(t, ω, x), for which G(v(·)) ∈ [0, ρ]. The stated inequalities follow from the

fact that for each selection for the SDI we have in fact G(v(·)) ∈ [0, ρ].

Remark 3. We see from this theorem that the solution tube for the SDI (13) is

delimited by the two ”extreme” solutions, namely φρ and φ0. Analogously we get

that the set of random fixed points corresponding to the SDI (13) is delimited by the

two random fixed points x∗0 and x∗ρ, corresponding to G ◦ v ≡ 0 and G ◦ v ≡ ρ.

II. Now we consider that our equation is driven not only by the underlying

noise term ω(t) = W (t) ω ∈ Ω̃ but also by nonrandom control functions v ∈ C(R, R+)

(note, that v is the dose drug in the cancer growth model). In this case, the theory

of RDS is embedded into the theory of non-autonomous dynamical systems.

Let Ω̂ be a nonempty set of elements. For each t ∈ R we consider θ̂t : R × Ω̂ 7→ Ω̂

satisfying the group property θ̂0 = id , θ̂t+s = θ̂t ◦ θ̂s for all s, t ∈ R.
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Definition 5. We call (φ̂, θ̂) a non-autonomous dynamical system (NDS), if

φ̂ : R+ × Ω̂ × X 7→ X satisfies for all s, t ∈ R+, ω̂ ∈ Ω̂ and x ∈ X the cocycle

property φ̂(0, ω̂, x) = x, φ̂(t + s, ω̂, x) = φ̂
(
t, θ̂sω̂, φ̂(s, ω̂, x)

)
.

Let (Ω̃, F̃ , P̃) be the Wiener space and θ the Wiener shift MDS given in

Example 1. Let Ω̃∗ be the set of measure 1 which satisfies the properties from Remark

1.

For our problem (3) we consider the NDS: Ω̂ := Ω̃× C(R, R+)

θ̂t(ω, v)(·) = (θtω(·), v(·+ t)) for all (ω, v) ∈ Ω̃× C(R, R+),

and for x ∈ R+ the cocycle is given for each (ω, v) ∈ Ω̃∗ × C(R, R+) by

φ̂(t, (ω, v), x) = xe−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds + σ

t∫
0

eλ(s−t)dW (s)

 , (19)

while for (ω, v) ∈ (Ω̃ \ Ω̃∗)× C(R, R+) by φ̂(t, (ω, v), x) = x.

One can check by calculations that in our case (φ̂, θ̂) is a NDS over Ω̂. In these

calculations it is essential that the MDS θ is measure preserving with respect to P̃ .

Theorem 4. If G, v ∈ C(R, R+) and G is bounded, then the solution of equation (3)

has the following long time behavior: for each x ≥ 0 it holds

lim
t→∞

φ̂(t, θ̂−t(ω, v), p0) = µ exp
{
−

∫ 0

−∞
eλs

(
G(v(s)) + σλW (s)

)
ds

}
for all (ω, v) ∈ Ω̃∗ × C(R, R+).

The proof is similar to the proof of Theorem 2.

This result shows, that there exists a stable random fixed point for the NDS (φ̂, θ̂)

x∗((ω, v)) =



µ exp
{
−

∫ 0

−∞
eλs (G(v(s)) + σλW (s)) ds

}
for (ω, v) ∈ Ω̃∗ × C(R, R+)

µ for (ω, v) ∈ (Ω̃ \ Ω̃∗)× C(R, R+).

There is a strong relation between a large set of DIs and set valued dynamical systems.

Like differential equations often generate dynamical systems, DIs generate set valued
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dynamical systems. That is, we can use the numerical methods for the approximation

of dynamical systems also for DIs by taking the set valued nature of the inclusions

into account. We can interpret (13) also as a set valued random dynamical system. If

we replace the cocycle mapping φ with a set valued nonempty compact and convex

cocycle mapping Φ (see [4]) we can define set valued random dynamical systems.

Definition 6. We call (Φ, θ) a set valued random dynamical system (SVRDS) if

Φ : R+ × Ω × X 7→ K(X) is measurable and satisfies for all s, t ∈ R+, ω ∈ Ω and

x ∈ X the perfect set valued cocycle property Φ(0, ω, x) = {x}, Φ(t + s, ω, x) =

Φ(t, θsω, Φ(s, ω, x)) ∀s, t ∈ R+.

In addition, we make also the following assumptions on Φ: We assume the

continuity in time i.e. limt→s dH(Φ(t, ω, x),Φ(s, ω, x)) = 0 ∀ ω ∈ Ω and upper semi-

continuity in parameter and initial value i.e. for x, y ∈ R we have

lim
x→y,ω1→ω2

d∗H(Φ(t, ω1, x),Φ(t, ω2, y)) = 0

uniformly in t, where t belongs to any compact interval from [0,∞) and for all ω ∈ Ω.

A trajectory of a SVRDS is a single valued mapping φ : R+ 7→ R which for all ω ∈ Ω

satisfies φ(ω, t) ∈ Φ(t− s, θsω, φ(ω, s)), where 0 ≤ s ≤ t.

As mentioned before SVRDS are generated for example by RDI (10) or SDI (11).

Of course in this cases the trajectories of the SVRDS correspond to selections of the

inclusion. The SDI (13) with (14) generates a SVRDS, while the SDI (13) with (15)

generates set valued non-autonomous dynamical system.

5. Simulations

In this section we want to give some numerical results for (3). Note that

our model is qualitative and not quantitative, the values given on the axes are not

realistic. However it is possible to scale the model to any desired situation.

In our simulations we will use the parameters k1 = 1, k2 = 1, λ = 1, µ = 1.

In Figure 1 we can see the stochastic model without control functions. We used three

different initial conditions. The existence of the random fixed point x∗0, which is the
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Figure 1. Simulation of three initial conditions for the control free

system (G ◦ v = 0).
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Figure 2. Simulations with different controls.

bound for the maximal tumor size is well visible.

In Figure 2 we have simulated our stochastic model for different control functions.

We used v(t) = 1 + cos(t) (nonrandom case) and v(t) = e−z∗(t) (stationary process).

Also in these cases the random fixed point exists. However such controls are only of

theoretical interest but they support the results of the theory given in Section 2.

From the theoretical results it is clear that we have to use drugs with a high enough

destroying rate for the cancer cells. Our simulations support this assertion. Let us

interpret our model as an SDI (13) with (14). The approximations in Figure 3 show

the reachable set of the inclusion for different maximal destroying rates with the same

selection strategy. Of course the simulation takes into account that we can use the

maximal destroy rate for all t, which is obviously not possible because this destroy
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Figure 3. Simulations for different maximal destroy rates for the

SDI (13) with (14).

Figure 4. Simulations for different maximal destroy rates for the

SDI (13) with (15).

rate damages also good cells. However the inclusion for (14) includes this very opti-

mistic but unrealistic case.
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It is clear from real world examples that realistic controls have to be some kind of pe-

riodic functions, because the drugs are given in intervals. It is not possible to control

the concentration of the drugs for every time t and it is surely not possible to shorten

the interval arbitrary.

We get a more appropriate model, if we use (15) in the SDI (13). Note, we have

made the assumption that v has to be some kind of periodic function, where the time

span for the therapy and the time span for rest has the same size. Also in this case

we need a high enough destroying rate to get a successful procedure. In the time

span, where we do not use drugs the tumor is again growing but the patient has the

chance to improve his health for the new therapy session. The simulations are shown

in Figure 4.

We point out that we are not experts in the topic of real healing procedures. The

mathematical strategies used here are probably not realistic. But it is easily possible

to extend these ideas to other more appropriate strategies.

However, the numerical results imply that it seems not possible to use a gentle pro-

cedure for the drug disposal. To get a successful procedure it seems to be necessary

to use an aggressive strategy depending of the strength and health of the patient.
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