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A SURROGATE DUAL ALGORITHM
FOR QUASICONVEX QUADRATIC PROBLEMS

ABDESSAMAD AMIR AND ADNAN YASSINE

Abstract. The purpose of this paper is to solve, via a surrogate dual

method, a quadratic program where the objectif function is not explicitly

given. We apply our study to quasiconvex quadratic programs.

1. Introduction

In general a quadratic optimization problem can be formulated as:

min{Q (x) =
1
2

xT Hx + cT x : Ax ≤ b, x ≥ 0} (1)

where H is a symmetric n × n matrix, c ∈ Rn, A is a m × n matrix and b ∈ Rm.

The computational cost for solving such a problem depends on the properties of the

matrix H and the dimensions m and n. The convex quadratic problem (i.e. when H

is positive semidefinite) is often not more difficult to solve than a linear problem. The

non convex case is more difficult, stationary points and local minimums which are not

global minimums may exist [15]. In this paper, we are interested in the same quadratic

programs (1) with only quasiconvex objective. Historically, the first criteria on the

quasiconvex and pseudoconvex quadratic functions were given by Martos [11], Cottle

and Ferland [1]. As we will see in the second section, these authors characterize this

class of nonconvex quadratic functions with a finite number of conditions, contrary

to the classical definitions. Furthermore, Ferland [6] and Schaible [12] independently

obtained a characterization of quasiconvex and pseudoconvex quadratic functions on

arbitrary solid convex sets. In mathematical programming, the pseudoconvexity of
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the objective is more wished than the quasiconvexity owing to the fact that the

conditions of optimality of Karuch-Kuhn-Tucker (K-K-T) are necessary and sufficient

to ensure the global minimum of the problem. But by weakening the pseudoconvexity

assumptions to the quasiconvex case, these conditions become only necessary, and give

only critical points.The third section is devoted to the surrogate duality [3], which is

more adapted to quasiconvex programming than Lagrangian duality [8]. Indeed often

we obtain an non empty duality gap. In the situation when the surrogate dual can be

explicitly computing ( for example Q is strictly convex), this gave rise to interesting

numerical treatment[14]; but in the general case the objective function is expressed

only in implicit form. Our aim is to give a surrogate dual method in this difficult

situation. By taking as a starting point the paper of Dyer [5], we present in the fourth

section, an algorithm based on the cutting planes method, well adapted to solve a

problem of type (1) with quasiconvex objective function. An example is solved via

this algorithm within a small number of iterations.

2. Quasiconvex and pseudoconvex quadratic functions

In this section, we present criteria in terms of eigenvalues and eigenvectors

of the quasi-convex and pseudo-convex quadratic functions defined on a solid convex

set, and especially on the positive orthant Rn
+. We note by intC the interior of the

set C.

2.1. Definitions. We consider the quadratic function

Q (x) =
1
2

xT Hx + cT x

H = (hij)i,j=1,..,n , H symmetric, c = (ci)i=1,..,n

and let C ⊂ Rn denote a solid convex set, i.e., intC 6= ∅.

Definition 2.1. The quadratic function Q is said to be quasiconvex [2] on C if,

∀x, y ∈ C, ∀λ ∈ ]0, 1[ , Q ((1− λ) x + λy) ≤ max (Q (x) , Q (y)) . (2)
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Equivalently, this means that the lower-level sets

Lα (Q) = {x ∈ C : Q (x) ≤ α}

are convex ∀α ∈ R [2]. in the smooth case, which is the situation here (Q is quadratic),

definition 2.1 becomes

∀x, y ∈ C, Q (y) ≤ Q (x) =⇒ (y − x)T ∇Q (x) ≤ 0. (3)

Definition 2.2. Q is pseudoconvex [10] if,

∀x, y ∈ C, (y − x)T ∇Q (x) ≥ 0 =⇒ Q (y) ≥ Q (x) (4)

Definition 2.3. Q is said to be strictly pseudoconvex if,

∀x, y ∈ C, x 6= y, (y − x)T ∇Q (x) ≥ 0 =⇒ Q (y) > Q (x) . (5)

It is easy to show that strict pseudoconvexity implies pseudoconvexity, and

pseudoconvexity implies quasiconvexity. On the other hand the opposite is not always

true. A quasi-convex function (resp. pseudo-convex, strictly quasi-convex) which is

not convex is called merely quasi-convex (resp. pseudo-convex, strictly quasi-convex).

2.2. Finite criteria for a solid convex set. Denote by H† the Moore-Penrose pseu-

doinverse matrix of H, and denote by the triple In (H) = (µ+ (H) , µ− (H) , µ0 (H))

the inertia of the matrix H, where µ+ (H), µ− (H) and µ0 (H) denote respectively the

numbers of positive, negative and null eigenvalues of H. There exist a n×n diagonal

matrix D and n × n matrix P such that H = P tHP , P tP = I and let (di) where

i = 1, ..., n the i-th diagonal entry of D. We denote by U = {y : 〈Dy, y〉 ≤ 0} and by

T the set T = P tU . It is known that the quadratic function is convex if and only if

µ− (H) = 0. we look at the merely quasiconvex and pseudoconvex case. The carac-

terization of generalized convex quadratic functions in terms of spectral properties is

given by the following theorem

Theorem 2.1.[4] A nonconvex quadratic function

Q (x) =
1
2

xT Hx + cT x

is quasiconvex (resp. pseudoconvex) on a solid convex C ⊂ Rn if and only if
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(i) H has one and only one negative eigenvalue, i.e., µ− (H) = 1;

(ii) c ∈ H (Rn);

(iii) C−H†c ⊂ T or C−H†c ⊂ −T ( C−H†c ⊂ intT or C−H†c ⊂ −intT ).

It is also seen in [4] that T and −T (resp. intT and -intT ) are the maxi-

mal domains of quasiconvexity (pseudoconvexity) of Q. the algorithm presented in

section 4 is applied to the problem (1) with general quasiconvex objective Q and con-

straint included in the maximal set of quasiconvexity. The fact that the constraints

in Problem (1) below to the posif orthant more attention is given to the case C = Rn
+.

2.3. Finite criteria for nonnegative orthant. We give below criteria for quasi-

convex and pseudoconvex quadratic functions defined on Rn
+ making the definitions

(2), (3), (4) and (5) much more practical, this criteria can be derived by specializing

the general result in theorem (2.1). We note that a quadratic function is quasiconvex

on Rn if and only if it is convex on Rn, and contrary to the convex functions the

quasiconvex functions can be quasiconvex on a convex subset of Rn without being it

on all the space Rn.

Theorem 2.2. [11] and [1] The quadratic function Q is merely quasiconvex (esp.

merely pseudoconvex)on Rn
+ (on intRn

+) if and only if

(i) H ≤ 0; i.e. hij ≤ 0 ∀i, j = 1, ..., n.

(ii) c ≤ 0; i.e. ci ≤ 0 ∀i = 1, ...., n.

(iii) H has exactly one and only one eigenvalue, i.e.,µ− (H) = 1;

(iv) cT H†c ≤ 0.

Remark 2.1. We note that the condition (iv) of theorem (2.1) imposes that the

component ck of the vector c is necessarily equal to 0 if the line hk of the matrix H is

null. Furthermore, if H is nonsingular, then Q is strictly pseudo-convex if and only if

(i), (ii), (iii) and (iv) are checked, this last condition can be replaced by the condition

cT H−1c ≤ 0 . With true statement, if the quadratic function Q is quasi-convex on Rn
+,

and if we suppose moreover that c 6= 0, then Q is always pseudo-convex on Rn
+−{0}.

This result can be found in [1].
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Exemple 2.1. Consider the function

Q1 (x) = −1
2

(x1 + x2)
2 − x1 − x2

where H1 =

 −1 −1

−1 −1

, et c1 =

 −1

−1

. The two eigenvectors of H1 are λ1 = −2

et λ2 = 0. Q1is not convex (H1is not positive semidefinite), we can remark that

the vector

 −1

0

 satisfies the condition (iv) of theorem (2.2), then Q1 is merely

quasiconvex on R2
+, and with remark (2.1) Q is also merely pseudo-convex on R2

+−{0}.

Pseudo-convexity is wished in mathematical programming, since the condi-

tions of optimality of K-K-T become necessary and sufficient. This makes it possible

to solve our problem with the various algorithms using the system of K-K-T (method

of Lemke, methods of interior points. . . ). Problems appear when the function Q is

merely quasiconvex, in such a situation the algorithm of the section 4 can be regis-

tered.

It is significant to also announce that the conditions (i) and (ii) of theo-

rem (2.2) are not restrictive, because if we want to solve a problem of minimiza-

tion with objective Q, (iii) and (iv) are checked but (hij ≥ 0∀i, j = 1, ..., n) and

(ci ≥ 0∀i = 1, ..., n) on a compact polyhedral. Thus we will have to solve the follow-

ing problem:

min
{
Q (x) : Ax− b = 0, x ∈ Rn

+

}
= −max

{
−Q (x) : Ax− b = 0, x ∈ Rn

+

}
then we have, a maximization problem of a quasiconvex function, where the solution

is characterized by the following proposition:

Proposition 2.2. Let C be a polyhedral compact set of Rn, and f : Rn → R a

continuous quasiconvex function on C. Consider the problem to maximize f on C.

An optimal solution x̃ to the problem then exists, where x̃ is an extreme point of C.

Proof. f attains its maximum at x̃ ∈ C. Let x1, x2, ...., xk the extreme points of C,

assumes that f (x̃) > f (xj) for all j = 1, ..., k. By definition x̃ =
∑k

j=1 λjxj where∑k
j=1 λj = 1 and λj ≥ 0 for j = 1, ..., k.
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Since f (x̃) > f (xj) for every j, then

f (x̃) > max
1≤ j ≤k

f (xj) = α

or f is quasiconvex, then

f (x̃) = f
(∑k

j=1 λjxj

)
≤ max

1≤ j≤ k
f (xj) = α

hence the contradiction, so there exists necessarily j0 ∈ {1, .., k} such that f (x̃) =

f (xj0) . �

3. Surrogate duality for the quasiconvex programming

Return now to our problem (1), for every u belonging to a compact X set in

Rm
+ , we define:

X (u) =
{
x ∈ X : u> (Ax− b) ≤ 0

}
(6)

and the dual function

s (u) = min {Q (x) : x ∈ X (u)} . (7)

then the problem

(SP ) s∗ = sup
{
s (u) : u ∈ Rm

+

}
(8)

is called the surrogate dual problem associated with the primal problem (1). it is

clear that s (tu) = s (u) ∀ u ∈ X et ∀t > 0. This property simplifies the formulation

of the problem (SP) which can be rewritten as:

(SP ) s∗ = sup
{
s (u) : u ∈ Rm

+ , ‖u‖1 = 1
}

where ‖ ‖1, is the norm 1 of Rm, the problem (SP) becomes:

(SP ) s∗ = sup {s (u) : u ∈ 4} (9)

where 4 =
{
u ∈ Rm

+ :
∑m

i=1 ui = 1
}

is the simplex of Rm
+ .

The following result is a deduction of two theorems. The first is due to

Luenberger [9] and the second to Greenberg and Pierskalla [8].

Proposition 3.1. The function s is continuous and quasiconcave (i.e. -s is quasi-

convex) on the simplex 4.
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If we note by v (P ) the value of the primal problem, we check the weak duality

easily (s∗ ≤ v (P )). Luemberger [9] has shown that if v (P ) is finite then, there exists

ũ ∈ 4 such that

v (P ) = s∗ = s (ũ) = max {s (u) : u ∈ 4} . (10)

The fundamental reason for choosing the surrogate duality is that it produces a strong

duality (the duality gap v (P ) − s∗=0), this is due of course to the historical result

of Luemberger. In addition, we can always associate the Lagrangian dual problem to

(1)

(LDP ) L∗ = sup{min{Q (x) + λ>(Ax− b) : x ∈ Rn
+} : λ ∈ Rm

+}

It is important to notice that the objective function of our problem is not nec-

essarily pseudo-convex, from where the possibility of having a non nulle Lagrangean

duality gap (v (P ) − L∗ 6= 0). In addition, if we manage to calculate by a means or

another a multiplier of Lagrange, this last can be a good point of initialization for the

algorithm to present in the preceding section. In the article of Dyer [5] we find the

proposition quoted below which makes in evidence what we have just said.

Proposition 3.2. If λ is a Lagrange multiplier, and λ = λ

‖λ‖1

. then, we have always

s
(
λ
)
≥ L∗

moreover exactly one of the situations below holds:

(i) s
(
λ
)
≥ L∗.

(ii) s
(
λ
)

= L∗ but every neighbourhood of λ in 4, contains a point u such

that s (u) > L∗.

(iii) s
(
λ
)

= L∗ = s∗.

For that follows we consider the set

G (α) = A (Lα (Q))− b =
{
g = Ax− b : Q (x) ≤ α, ∀x ∈ Rn

+

}
and it’s polar set

G⊕ (α) =
{
u ∈ 4 : g>u ≥ 0,∀g ∈ G (α)

}
=

{
u ∈ 4 : (Ax− b)>u ≥ 0, Q (x) ≤ α,∀x ∈ Rn

+

}
21
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these two sets will be fundamental for the characterization of the solution u of s (.).

Proposition 3.3. s∗ is the minimum number α such that intG⊕ (α) = ∅.

Proof. If α < s∗, then there exists u such that s (u) > α. Which is equivalent to

X (u) ∩ Lα (Q) = ∅, which is again true if and only if gT u > 0 for all g ∈ G (α),

but this is equivalent to say that u ∈ intG⊕ (α), we conclude that if α < s∗ then

intG⊕ (α) 6= ∅. If now α ≥ s∗, we get necessarily for all u ∈ intG⊕ (α), s (u) > α ≥

s∗, which is impossible, hence intG⊕ (α) = ∅. �

4. An algorithm for a quasiconvex quadratic problem

The method of resolution suggested here is a dual method, it is a question

of finding the point ũ which solves the surrogate dual problem, and which will give

the value of the primal problem thus s∗ and a solution x (ũ), if it is feasible it is the

optimal solution of the primal problem. When the quadratic function Q is strictly

convex (i.e., H is positive definite), for the following problem

min{Q (x) =
1
2

x>Hx + c>x : Ax ≤ b, x ∈ Rn}

we can calculate explicitly the dual function s (.), which can be formulated as

s (u) =
1
2

(
u>

(
AH−1c + b

))2

u>AH−1A>u
− 1

2
cT H−1c

see [14] for more detail. Unfortunately, it is not the case for problem(1) with Q only

quasiconvex.

The algorithm described below gives to each iteration k the point sk the

element of the sequence (sk)k which will have to converge towards the optimal value

s∗, each point sk, is equal to s (uk) if

X
(
uk

)
∩ Lsk−1 (Q) = ∅ (11)

else take the value sk−1.

The formula (11) lead us to the resolution of the problem with a single con-

straint

(NLP )k s(uk) = min
{
Q (x) : (uk)> (Ax− b) ≤ 0, x ∈ Rn

+

}
. (12)
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The point uk ∈ intUk, this set will have the property to contain intG⊕ (uk) at each

iteration k, considering the proposition (3.3) the algorithm will stop at the first k

such that intUk = ∅, and this is true if the radius rk of Uk becomes negative.

The set Uk = Uk−1 ∩
{
u ∈ 4 : u>(Axk − b) ≥ 0

}
, where xk is the optimal

solution of (NLP )k , if this last admits a solution in this step of the iteration k, and

in this case, like noted above, sk−1 is increased with the value sk = s
(
uk

)
= Q

(
xk

)
.

Otherwise xk is any feasible solution of (NLP )k. In each iteration k we add a cutting

plane, defined by the hyperplane Hk =
{
u ∈ Rn : (u)>A

(
xk − b

)
= 0

}
.

Let us note by gk the vector Axk − b. The Euclidean distance be-

tween the point u of Uk and its border is equal to rk (u) =
u>gk

γk
, where γk =√

(gk)>gk − 1
m (e>gk)2 and e> = (1, ...., 1).

The radius of Uk is given by

r∗k = max {rk(u) : u ∈ Uk} ,

we can check that the intUk 6= ∅ if and only if r∗k > 0.

It is not difficult to see that

(LP )k r∗k = max
{
r : u>gk − γkr ≥ 0, , u ∈ 4

}
(13)

the problem (LP )k is linear, it is considered at each iteration k and its resolution

by a classical method such as the simplex method will give the solution
(
uk, r∗k

)
. At

each iteration k the choice of uk+1 depends on a parameter of convergence θ ∈ ]0, 1]

fixed at the beginning, the number αk ∈ ]0, 1] calculated at each iteration k, the point

uksolution of the linear problem (LP )k and the point uk who should not belong to the

the interior of Uk in the iteration k. The point uk+1 must be sufficiently distant from

the boundary of Uk, then for any boundary point u, uk+1 = θuk + (1− θ)u ∈ intUk

but for uk and uk it is easy to find a boundary point u of Uk, let us choose it as

αkuk + (1− αk) uk (14)
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where α ∈ [0, 1[ is given by

αk =
−(uk)T gk

(uk)gk − (uk)T gk
(15)

we replace (15) in (14), the point uk+1 can be taken as

uk+1 = (1− βk) uk + βkuk whith βk = (1− αk) (1− θ) (16)

and will have the property to belong to the intUk, and if the parameter θ is quite

selected the continuity of the dual function s (.) will give an accepted variation from

the point uk to the point uk+1 which will ensure a growth moderated towards the

optimal value s∗. We give the steps of the algorithm at each iteration k and the

convergence result.

The Algorithm

� step 0:

k = 1, 0 < θ ≤ 1 let ε > 0 the tolerance, and a given u1.

� step 1:

Resolution of the nonlinear problem (NLP )k

(NLP )k : s
(
uk

)
= min

{
Q (x) :

(
uk

)>
(Ax− b) ≤ 0, x ∈ IRn

+

}
� If (NLP )k has a solution xk and if s

(
uk

)
≥ sk−1

sk = s
(
uk

)
= Q(xk)

� else consider any feasible solution xk of (NLP )k and put

sk = sk−1

compute

gk, γk, βk

� step 2:

Resolution of the linear problem (PL)k

(PL)k : r∗k = max

{
r :

n∑
i=1

uig
l
i − γkr ≥ 0, l = 1, ..., k,

m∑
i=1

ui = 1, u ≥ 0

}
� if r∗k < ε!then stop.
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� Else consider the solution
(
r∗k, uk

)
of (PL)k, and compute the vector of

the simplex 4

uk+1 = (1− βk) uk + βkuk

� step 3:

k = k + 1 . Go to step 1.

The convergence result is presented in the following proposition

Proposition 4.1. The sequence of points (sk)k generated by the algorithm will become

stationary and take the value s∗ from a certain rank, or limk→∞ sk = s∗.

Proof. By construction the sequence (sk)k is nondecreasing and is majored by s∗

where sk ≤ s∗∀k, thus either it becomes stationary starting from a certain rank, or it

converges towards a limit. The nondecreasing of the sequence (sk)k gives the following

inclusion
{
xl

}
⊆ Lsk

(Q) ∀l ≤ k, this leads us to say that G⊕ (sk) ⊆ Uk ∀k.

If rk ≤ 0 for a certain k then, intUk = ∅ and consequently intG⊕ (sk) = ∅.

But the proposition (3.3) implies that sk ≥ s∗∀k, thus necessarily sk = s∗. Let us

show now that if sk converges to a limit s̃ then necessarily s̃ = s∗. To be done let us

show initially that rk tends inevitably to 0. Let us suppose that rk > 0 ∀k. At the

iteration k, ul /∈ intUk for all l < k, since for all xl we have intUk ⊆
{
u : uT gl > 0

}
and uT

l gk ≤ 0, and hence the Euclidean distance between uk and ul , ‖uk − ul‖ ≥ r∗k

. The sequence
(
uk

)
k

admits a value of adherence since it is contained in the simplex

4, the sequence (rk)k is convergent towards a limit since it is nonincreasing and

lowerbounded by 0, then ∀η > 0 ∃N ∈ N such that for all k > l ≥ N , we have

‖uk − ul‖ < η, from where rk < η, this shows that limk→∞ rk = 0.

Let us suppose now that limk→∞ sk = s̃ < s∗, then sk ≤ s̃ for any k,

we deduce that G⊕ (s̃) ⊆ Uk ∀k, but from the proposition (3.3) we deduced that

intG⊕ (s̃) 6= ∅, and hence this set contains a point û of distance r̂ > 0 from the bound-

ary of intG⊕ (s̃), and there will be r∗k ≥ r̂ ∀k, which gives that limk→∞ r∗k ≥ r̂ > 0,

this contradiction show that limk→∞ sk = s∗. �

Example. The algorithm given above can be applied to general quasiconvex pro-

gramming, but for illustration we consider the counterexample of Martos given in

25



ABDESSAMAD AMIR AND ADNAN YASSINE

[11], where some (not all ) primal convex quadratic algorithms fail to solve it.

min{Q2 (x) = 1/2 xT H2x : A2 (x) ≤ b;x = (x1, x2) ≥ 0}

where

H2 =


−1 −2 −7

−2 0 0

−7 0 0

 , A2 =

 2 1 1

0 1 2

 , b2 =

 16

12


the optimal solution of this problem is (5, 0, 6) , and −222.5 is the optimum value.

The convergence parameter θ is set equal to 0.25, for this example a relatively

small value would not work better, we take for the starting point u1 the center of the

simplex (1/2, 1/2), at each iteration the quantities αk, βk are as defined in (15) and

(16). The implementation is proposed in the Matlab environment, at each iteration

we use the two functions of Matlab quadprog and linprog for the problem (NLP )k

and (LP )k respectively. The following table gives the evolution of the sequence (sk)k

for this example.

iteration k uk sk xk gk rk

1 (1/2,1/2) -256.11 (7.84,0,4.12) (3.79,3.79) 0.71

2 (0.62,0.37) -232.34 (6.29,0,4.82) (1.41,-2.35) 0.53

3 (0.63,0.36) -224.53 (5.52,0,5.41) (0.46,-1.18) 0.19

4 (0.65,0.34) -222.55 (5.08,0,5.89) (0.06,-0.21) 0.08

5 (0.66,0.33) -222.50 (5.01,0,6.02) (0.04,-5.98) 0.00

after five iterations we get s4 ' −222.5, the corresponding surrogate multiplier u4 =

(0.66, 0.33) and the solution x4 ' (5, 0, 6).

Conclusion. The computing experiences that we have done for several examples with

general quasiconvex programming, shows that if we get at hand a good subroutine to

solve at each iteration the problem (NLP )k with a single constraint this algorithm

converges to the optimal value, it is the case in non linear quadratic programming,

which is explains our choice. The question of how we can compute a global minimum

of a nonlinear program is always very difficult, but in this context we get at least a

tool that lead’s to the optimal value.
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Université du Havre, France

E-mail address: adnan.yassine@univ-lehavre.fr

28


