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A CUTTING PLANE APPROACH TO SOLVE THE RAILWAY

TRAVELING SALESMAN PROBLEM

PETRICĂ C. POP, CHRISTOS D. ZAROLIAGIS, AND GEORGIA HADJICHARALAMBOUS

Abstract. We consider the Railway Traveling Salesman Problem. We

show that this problem can be reduced to a variant of the generalized

traveling salesman problem, defined on an undirected graph G = (V, E)

with the nodes partitioned into clusters, which consists in finding a mini-

mum cost cycle spanning a subset of nodes with the property that exactly

two nodes are chosen from each cluster. We describe an exact exponen-

tial time algorithm for the problem, as well we present two mixed integer

programming models of the problem. Based on one of this models pro-

posed, we present an efficient solution procedure based on a cutting plane

algorithm. Extensive computational results for instances taken from the

railroad company of the Netherlands Nederlandse Spoorwegen and involv-

ing graphs with up to 2182 nodes and 38650 edges are reported.

1. Introduction

Assume that a salesman traveling with railways wishes to visit a certain

number of cities. The salesman has a limited budget and the goal is to establish a

schedule that allows him to visit all the cities and returning to the starting city at the

total minimum cost, taking into consideration that when arrived at a station he/she

has to spend some time for his affairs and then to continue his journey to another city

with the first available train. We shall refer to this problem as the Railway Traveling

Salesman problem, denoted (RTSP).
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PETRICĂ C. POP, CHRISTOS D. ZAROLIAGIS, AND GEORGIA HADJICHARALAMBOUS

The salesman is aware of the time schedule and is therefore able to construct

the corresponding time-expanded graph G = (V, E), see [1]. In that graph, every event

(arrival or departure of a train) at a station corresponds to a node and edges between

nodes represent either elementary connections between two events (i.e. served by a

train that does not stop in-between), or waiting within a station. Nodes representing

time events belonging to the same station (city) will be referred to as nodes within the

same cluster, and the total number of clusters equals the total number of stations p

that the salesman has to visit. There are two types of edges: inter-cluster edges (cor-

responding to elementary connections between the stations) and intra-cluster edges

(corresponding to waiting in a station for some later connection). With this graph

at hand the salesman can associate costs to its edges according to the cost measure

he/she wants to minimize. Consequently, the RTSP reduces in finding a Hamiltonian

tour H of the minimum cost in the subgraph of G induced by S, where S ⊆ V such

that S contains exactly two nodes from every cluster. This leads to a variant of the

so-called generalized traveling salesman problem (GTSP).

The generalized traveling salesman problem, introduced by Laporte and

Nobert [5] and by Noon and Bean [6] is defined on a complete undirected graph

G whose nodes are partitioned into a number of subsets (clusters) and whose edges

have a nonnegative cost. The GTSP asks for finding a minimum-cost Hamiltonian

tour H in the subgraph of G induced by S, where S ⊆ V such that S contains at least

one node from each cluster.

A different version of the problem called E-GTSP arises when imposing the

additional constraint that exactly one node from each cluster must be visited.

Both problems GTSP and E-GTSP are NP -hard, as they reduce to traveling

salesman problem when each cluster consists of exactly one node.

The GTSP has several applications to location and telecommunication prob-

lems. More information on these problems and their applications can be found in

Fischetti, Salazar and Toth [1, 2], Laporte, Asef-Vaziri and Sriskandarajah [3], La-

porte, Mercure and Nobert [4]. It is worth to mention that Fischetti, Salazar and
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Toth [2] solved the GMST problem to optimality for graphs with up to 442 nodes

using a branch-and-cut algorithm.

In this paper, we introduce the (above mentioned) variant of the GTSP, called

the 2-GTSP, which, given a graph G with non-negative edge costs, asks for finding

a minimum cost Hamiltonian tour H of G spanning a subset of nodes that includes

exactly two nodes from each cluster and exactly one edge from each cluster. Clearly,

a solution to 2-GTSP is a solution to the railway traveling salesman problem.

The aim of this paper is to provide an exact algorithm for the 2-GTSP as

well as two integer programming formulations of the problem and an efficient cutting

plane algorithm.

2. Definition and Complexity of the 2-GTSP

Let G = (V, E) be an n-node undirected graph whose edges are associated

with non-negative costs. We will assume w.l.o.g. that G is a complete graph (if there

is no edge between two nodes, we can add it with an infinite cost). Let V1, ..., Vp be a

partition of V into p subsets called clusters (i.e. V = V1 ∪V2 ∪ ...∪Vp and Vl ∩Vk = ∅

for all l, k ∈ {1, ..., p}). We denote the cost of an edge e = {i, j} ∈ E by cij or by

c(i, j). Let e = {i, j} be an edge with i ∈ Vl and j ∈ Vk. If l 6= k the e is called an

inter-cluster edge; otherwise e is called an intra-cluster edge.

The 2-generalized traveling salesman problem (2-GTSP) asks for finding a

minimum-cost tour H spanning a subset of nodes such that H contains exactly two

nodes from each cluster Vi, i ∈ {1, ..., p}. The problem involved two related decisions:

• choosing a node subset S ⊆ V , such that |S ∩ Vk| = 2, for all k = 1, ..., p.

• finding a minimum cost Hamiltonian cycle in the subgraph of G induced

by S.

We will call such a cycle a 2-Hamiltonian tour. An example of a 2-

Hamiltonian tour for a graph with the nodes partitioned into 6 clusters is presented

in the next figure.
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Figure 1. Example of a 2-Hamiltonian tour

As we already mentioned, both problems GTSP and E-GTSP are NP -hard,

as they reduce to traveling salesman problem when each cluster consists of exactly

one node. Consequently, the 2-GSTP is also an NP-hard problem.

3. An Exact Algorithm for the 2-GTSP

In this section, we present an algorithm that finds an exact solution to the

2-GTSP.

Given a sequence (Vk1
, ..., Vkp

) in which the clusters are visited, we want to

find the best feasible 2-Hamiltonian tour H∗ (w.r.t cost minimization), visiting the

clusters according to the given sequence. This can be done in polynomial time, by

solving |Vk1
| shortest path problems as we will describe below.

We construct a layered network, denoted by LN, having p + 1 layers corre-

sponding to the clusters Vk1
, ..., Vkp

and in addition we duplicate the cluster Vk1
. The

layered network contains all the nodes of G plus some extra nodes v′ for each v ∈ Vk1
.

There is an arc (i, j) for each i ∈ Vkl
and j ∈ Vkl+1

(l = 1, ..., p − 1), having the cost

cij and an arc (i, h), i, h ∈ Vkl
, (l = 2, ..., p) having cost cih. Moreover, there is an

arc (i, j′) for each i ∈ Vkp
and j′ ∈ Vk1

having cost cij′ .
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v

Figure 2. Example showing a 2-Hamiltonian tour in the constructed

layered network LN

For any given v ∈ Vk1
, we consider paths from v to w′, w′ ∈ Vk1

, that visits

exactly two nodes from each cluster Vk2
, ..., Vkp

, hence it gives a feasible 2-Hamiltonian

tour.

Conversely, every 2-Hamiltonian tour visiting the clusters according to the

sequence (Vk1
, ..., Vkp

) corresponds to a path in the layered network from a certain

node v ∈ Vk1
to w′ ∈ Vk1

.

Therefore, it follows that the best (w.r.t cost minimization) 2-Hamiltonian

tour H∗ visiting the clusters in a given sequence can be found by determining all

the shortest paths from each v ∈ Vk1
to each w′ ∈ Vk1

with the property that visits

exactly two nodes and one edge each from clusters (Vk2
, ..., Vkp

).

The overall time complexity is then |Vk1
|O(m + n logn), i.e. O(nm + nlogn)

in the worst case. We can reduce the time by choosing |Vk1
| as the cluster with

minimum cardinality.

Notice that the above procedure leads to an O((p − 1)!(nm + nlogn)) time

exact algorithm for the 2-GTSP, obtained by trying all the (p − 1)! possible cluster

sequences. So, we have established the following result:
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Theorem 1. The above procedure provides an exact solution to the 2-GSTP in O((p−

1)!(nm+nlogn)) time, where n is the number of nodes, m is the number of edges and

p is the number of clusters in the input graph.

Clearly, the algorithm presented, is an exponential time algorithm unless the

number of clusters p is fixed.

4. Integer Programming Formulations of the 2-GTSP

In this section, we present two different integer programming formulations of

the 2-GTSP.

In order to formulate the 2-GTSP as an integer program, we introduce the

binary variables:

xe = xij =































1 if the edge e = {i, j} ∈ E

is included in the selected subgraph

0 otherwise,

zi =



















1 if the node i is included in the selected subgraph

0 otherwise.

A feasible solution to the 2-GTSP can be seen as a cycle free subgraph with

2p− 1 edges connecting all the clusters such that exactly two nodes are selected from

each cluster.

For F ⊆ E and S ⊆ V , let E(S) = {e = {i, j} ∈ E | i, j ∈ S}, x(F ) =
∑

e∈F

xe

and z(S) =
∑

i∈S

zi. Also, let x(Vk, Vk) =
∑

i,j ∈Vk,i<j

xij , where k ∈ {1, ..., p}.
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The 2-GTSP can be formulated as the following 0-1 integer programming

problem:

min
∑

e∈E

cexe

s.t. z(Vk) = 2, ∀ k ∈ {1, ..., p} (1)

x(δ(i)) = 2zi, ∀ i ∈ V \ V1 (2)

x(E) = 2p − 1 (3)

x(Vk, Vk) = 1, ∀ k ∈ {2, ..., p} (4)

x(E(S)) ≤ 2r − 1, ∀ S = ∪r
i=1

Vli , 2 ≤ r ≤ p − 1 (5)

xe ∈ {0, 1}, ∀ e ∈ E (6)

zi ∈ {0, 1}, ∀ i ∈ V. (7)

where for i ∈ V \ V1, the set, denoted by δ(i), is defined as

δ(i) = {e = {i, j} ∈ E | j ∈ V }.

In the above formulation, constraint (1) guarantee that from every cluster we

select exactly two nodes, constraints (2) require that the number of edges incident with

a node i to be either 2 (if node i is visited) or 0 otherwise, constraint (3) guarantees

that the selected subgraph has 2p−1 edges, constraints (4) guarantee that from every

cluster we select (except the starting cluster) we select one edge and finally constraints

(5) eliminate all the cycles connecting at most p − 1 clusters.

Replacing the subtour elimination constraints (5) by connectivity constraints,

we result in the so-called generalized cut-set formulation:

min
∑

e∈E

cexe

s.t. (1), (3) − (5) and

x(δ(S)) ≥ 2(zi + zj − 1), ∀ S ⊂ V, with 2 ≤ |S| ≤ p − 1

and ∀ i ∈ S, j ∈ V \ S. (8)
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where for S ⊆ V , the cut-set, denoted by δ(S), is defined as

δ(S) = {e = {i, j} ∈ E | i ∈ S, j /∈ S}.

In the above formulation, constraints (8) are the connectivity constraints

saying that each cut separating two visited nodes (i and j) must be crossed at least

twice.

In the addition to the constraints that appear in the previous formulations,

we consider also the following constraints specific to the railway traveling salesman

problem:

tdzd − taza ≥ tk, ∀ a, d ∈ Vk, 2 ≤ k ≤ p. (9)

The above constraints are saying that the difference between the departure

and arrival times has to be at least a specified time period th (depending on the city),

this means that the traveling salesman has to stay in each city for some time to finish

his business. If the difference is too small, the salesman may fail to solve his business,

on the other hand, if the difference is too large, the waiting time at the station will

be inconvenient.

The disadvantage of the described integer programming formulations is their

exponential number of constraints (we have to choose subsets of V , constraints (5)

and (8)). These constraints can be omitted and then can be generated as needed by a

separation algorithm: one can start without constraints (5), solve the corresponding

relaxation, then generate subtour inequalities that are violated by the current solution.

The separation algorithm for subtour constraints is based on network flow techniques,

for further details see [2].

5. Solution procedure and computational results

We used the following cutting plane algorithm in order to solve the 2-GTSP:

1. Let the integer programming (IP) formulation consists of the constraints

(1)-(4),(6),(7) and (9).
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2. Solve the IP and assume that the optimal solution consists of r subtours:

S1, ..., Sr.

3. If r = 1, then STOP; the solution is optimal to the 2-GTSP. Otherwise,

add to the IP formulation the corresponding constraints that eliminate the

cycles S1, ..., Sr and go to Step 2.

The algorithm was written in C and for each instance we have created the

corresponding integer program, which we solved it with CPLEX 6.5.

Test data for our algorithm are real networks from the Dutch railroad com-

pany Nederlandse Spoorwegen.

The first three data sets contains the Intercity train connections among the

larger cities in the Netherlands, stopping only at the main train stations, and thus

are considered faster than the normal trains. These trains operate at least every

half an hour. The second real-world data set, contains the schedules of the Intercity

trains and regional trains. The regional trains connect the cities in only one region,

including some main stations, while trains stop at each intermediate station between

two main ones.

Some characteristics of the graphs that were used for the real-world data

sets and the computational results obtained using the cutting plane algorithm are

displayed in the next table:

Table: Computational results for solving the RTSP

Pb. name No. stations No. nodes No. edges LB/OPT Sol. time

NS1 (IC) 5 394 4240 100 14.08 s

NS2 (IC) 7 674 9754 100 64.57 s

NS3 (IC) 9 926 16271 100 206.52 s

NS4 (IC+IR) 12 1470 23850 100 39.30 min

NS5 (IC+IR) 12 1586 27383 100 72.28 min

NS6 (IC+IR) 15 1722 28200 100 1.05 h

NS7 (IC+IR) 15 1946 34450 100 5.45 h

NS8 (IC+IR) 18 2182 38650 100 4.52 h

71
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The first four columns in the table give the name of the problem and the

size of the problem: the number of stations, the number of nodes and the number of

edges. The next two columns describe the cutting plane procedure and contain: the

lower bounds obtained as a percentage of the optimal value of the RTSP (LB/OPT)

and the computational times (CPU) for solving the RTSP to optimality.

6. Conclusions

We considered the Railway Traveling Salesman Problem (RTSP), which con-

sists in finding a minimum cost tour for a salesman traveling with railways and wishing

to visit a certain number of cities. We showed that the RTSP can be reduced to a

variant of the Generalized Traveling Salesman problem.

Based on one of the integer programming formulations that we proposed, we

present an efficient solution procedure based on a cutting plane algorithm. Com-

putational results for real networks from the Dutch railroad company Nederlandse

Spoorwegen and involving graphs with up to 2182 nodes and 38650 edges are reported.
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