STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LII, Number 4, December 2007

A-SUMMABILITY AND APPROXIMATION OF CONTINUOUS PERIODIC FUNCTIONS

CRISTINA RADU

Dedicated to Professor D. D. Stancu on his 80th birthday

Abstract. The aim of this paper is to present a generalization of the classical Korovkin approximation theorem by using a matrix summability method, for sequences of positive linear operators defined on the space of all real-valued continuous and 2π -periodic functions. This approach is motivated by the works of O. Duman [4] and C. Orhan, Ö.G. Atlihan [1].

1. Introduction

One of the most recently studied subject in approximation theory is the approximation of continuous function by linear positive operators using A-statistical convergence or a matrix summability method ([1], [3], [5], [7]).

In this paper, following [1], we will give a Korovkin type approximation theorem for a sequence of positive linear operators defined on the space of all real-valued continuous and 2π -periodic functions via \mathcal{A} -summability. Particular cases are also punctuated.

First of all, we recall some notation and definitions used in this paper.

Let $\mathcal{A} := (A^n)_{n \ge 1}$, $A^n = (a_{kj}^n)_{k,j \in \mathbb{N}}$ be a sequence of infinite non-negative real matrices.

For a sequence of real numbers, $x = (x_j)_{j \in \mathbb{N}}$, the double sequence

$$\mathcal{A}x := \{ (Ax)_k^n : k, n \in \mathbb{N} \}$$

 $Key\ words\ and\ phrases.$ matrix summability, sequence of positive linear operators, Korovkin type theorem, periodic function.

Received by the editors: 01.01.2007.

 $^{2000\} Mathematics\ Subject\ Classification.\ 41A36,\ 47B38.$

CRISTINA RADU

defined by $(Ax)_k^n := \sum_{j=1}^{\infty} a_{kj}^n x_j$ is called the \mathcal{A} -transform of x whenever the series converges for all k and n. A sequence x is said to be \mathcal{A} -summable to a real number L if $\mathcal{A}x$ converges to L as k tends to infinity uniformly in n (see [2]).

We denote by $C_{2\pi}(\mathbb{R})$ the space of all 2π -periodic and continuous functions on \mathbb{R} . Endowed with the norm $\|\cdot\|_{2\pi}$ this space is a Banach space, where

$$||f||_{2\pi} := \sup_{t \in \mathbb{R}} |f(t)|, \quad f \in C_{2\pi}(\mathbb{R}).$$

We also have to recall the classical Bohman-Korovkin theorem.

Theorem A. If $\{L_j\}$ is a sequence of positive linear operators acting from $C_{2\pi}(\mathbb{R})$ into $C_{2\pi}(\mathbb{R})$ such that

$$\lim_{i \to \infty} \|L_j f_i - f_i\|_{2\pi} = 0 \quad (i = 1, 2, 3),$$

where $f_1(t) = 1$, $f_2(t) = \cos t$, $f_3(t) = \sin t$ for all $t \in \mathbb{R}$, then, for all $f \in C_{2\pi}(\mathbb{R})$ we have

$$\lim_{j \to \infty} \|L_j f - f\|_{2\pi} = 0.$$

Recently, the statistical analog of Theorem A has been studied by O. Duman [4]. It will be read as follows.

Theorem B. Let $A = (a_{kj})$ be a non-negative regular summability matrix, and let $\{L_j\}$ be a sequence of positive linear operators mapping $C_{2\pi}(\mathbb{R})$ into $C_{2\pi}(\mathbb{R})$. Then, for all $f \in C_{2\pi}(\mathbb{R})$,

$$st_A - \lim_{j \to \infty} \|L_j f - f\|_{2\pi} = 0$$

if and only if

$$st_A - \lim_{i \to \infty} \|L_j f_i - f_i\|_{2\pi} = 0 \quad (i = 1, 2, 3),$$

where $f_1(t) = 1$, $f_2(t) = \cos t$, $f_3(t) = \sin t$ for all $t \in \mathbb{R}$. 156 $\mathcal A\text{-}\mathrm{SUMMABILITY}$ AND APPROXIMATION OF CONTINUOUS PERIODIC FUNCTIONS

2. A Korovkin type theorem

Theorem 2.1. Let $\mathcal{A} = (A^n)_{n \geq 1}$ be a sequence of infinite non-negative real matrices such that

$$\sup_{n,k} \sum_{j=1}^{\infty} a_{kj}^n < \infty \tag{2.1}$$

and let $\{L_j\}$ be a sequence of positive linear operators mapping $C_{2\pi}(\mathbb{R})$ into $C_{2\pi}(\mathbb{R})$.

Then, for all $f \in C_{2\pi}(\mathbb{R})$ we have

$$\lim_{k \to \infty} \sum_{j=1}^{\infty} a_{kj}^n \|L_j f - f\|_{2\pi} = 0,$$
(2.2)

uniformly in n if and only if

$$\lim_{k \to \infty} \sum_{j=1}^{\infty} a_{kj}^n \| L_j f_i - f_i \|_{2\pi} = 0 \quad (i = 1, 2, 3),$$
(2.3)

uniformly in n, where $f_1(t) = 1$, $f_2(t) = \cos t$, $f_3(t) = \sin t$ for all $t \in \mathbb{R}$.

Proof. Since f_i (i = 1, 2, 3) belong to $C_{2\pi}(\mathbb{R})$, the implication (2.2) \Rightarrow (2.3) is obvious.

Now, assume that (2.3) holds. Let $f \in C_{2\pi}(\mathbb{R})$ and let I be a closed subinterval of length 2π of \mathbb{R} . Fix $x \in I$. By the continuity of f at x, it follows that for any $\varepsilon > 0$ there exists a number $\delta > 0$ such that

$$|f(t) - f(x)| < \varepsilon$$
 for all t satisfying $|t - x| < \delta$. (2.4)

By the boundedness of f follows

$$|f(t) - f(x)| \le 2||f||_{2\pi}$$
 for all $t \in \mathbb{R}$. (2.5)

Further on, we consider the subinterval $(x - \delta, 2\pi + x - \delta]$ of length 2π . We show that

$$|f(t) - f(x)| < \varepsilon + \frac{2\|f\|_{2\pi}}{\sin^2 \frac{\delta}{2}} \psi(t) \text{ holds for all } t \in (x - \delta, 2\pi + x - \delta], \qquad (2.6)$$

where $\psi(t) := \sin^2\left(\frac{t-x}{2}\right)$. To prove (2.6) we examine two cases.

157

CRISTINA RADU

Case 1. Let $t \in (x - \delta, x + \delta)$. In this case we get $|t - x| < \delta$ and the relation (2.6) follows by (2.4).

Case 2. Let $t \in [x + \delta, 2\pi + x - \delta]$. In this case we have $\delta \leq t - x \leq 2\pi - \delta$ and $\delta \in (0, \pi]$. We get

$$\sin^2 \frac{\delta}{2} \le \sin^2 \left(\frac{t-x}{2}\right) \le \sin^2 \left(\pi - \frac{\delta}{2}\right),\tag{2.7}$$

for all $\delta \in (0, \pi]$ and $t \in [x + \delta, 2\pi + x - \delta]$.

Then, from (2.5) and (2.7) we obtain

$$|f(t) - f(x)| \le \frac{2\|f\|_{2\pi}}{\sin^2 \frac{\delta}{2}} \psi(t) \text{ for all } t \in [x + \delta, 2\pi + x - \delta].$$

Since the function $f \in C_{2\pi}(\mathbb{R})$ is 2π -periodic, the inequality (2.6) holds for all $t \in \mathbb{R}$.

Now, applying the operator L_j , we get

$$\begin{aligned} |L_{j}(f;x) - f(x)| &\leq L_{j}(|f - f(x)|;x) + |f(x)||L_{j}(f_{1};x) - f_{1}(x)| \\ &< L_{j}\left(\varepsilon + \frac{2\|f\|_{2\pi}}{\sin^{2}\frac{\delta}{2}}\psi;x\right) + \|f\|_{2\pi}|L_{j}(f_{1};x) - f_{1}(x)| \\ &= \varepsilon L_{j}(f_{1};x) + \frac{2\|f\|_{2\pi}}{\sin^{2}\frac{\delta}{2}}L_{j}(\psi;x) + \|f\|_{2\pi}|L_{j}(f_{1};x) - f_{1}(x)| \\ &\leq \varepsilon + (\varepsilon + \|f\|_{2\pi})|L_{j}(f_{1};x) - f_{1}(x)| + \frac{2\|f\|_{2\pi}}{\sin^{2}\frac{\delta}{2}}L_{j}(\psi;x). \end{aligned}$$

Since

$$L_{j}(\psi; x) \leq \frac{1}{2} \{ |L_{j}(f_{1}; x) - f_{1}(x)| + |\cos x| |L_{j}(f_{2}; x) - f_{2}(x)| + |\sin x| |L_{j}(f_{3}; x) - f_{3}(x)| \},$$
(2.8)

158

A-SUMMABILITY AND APPROXIMATION OF CONTINUOUS PERIODIC FUNCTIONS

(see [8], Theorem 4) we obtain

$$\begin{aligned} |L_j(f;x) - f(x)| &< \varepsilon + \left(\varepsilon + \|f\|_{2\pi} + \frac{\|f\|_{2\pi}}{\sin^2 \frac{\delta}{2}}\right) \left\{ |L_j(f_1;x) - f_1(x)| \\ &+ |L_j(f_2;x) - f_2(x)| + |L_j(f_3;x) - f_3(x)| \right\} \\ &\leq \varepsilon + K\{\|L_jf_1 - f_1\|_{2\pi} + \|L_jf_2 - f_2\|_{2\pi} + \|L_jf_3 - f_3\|_{2\pi}\}, \end{aligned}$$

where

$$K := \varepsilon + \|f\|_{2\pi} + \frac{\|f\|_{2\pi}}{\sin^2 \frac{\delta}{2}}.$$

Taking supremum over x, for all $j \in \mathbb{N}$ we obtain

$$||L_jf - f||_{2\pi} \le \varepsilon + K\{||L_jf_1 - f_1||_{2\pi} + ||L_jf_2 - f_2||_{2\pi} + ||L_jf_3 - f_3||_{2\pi}\}.$$

Consequently, we get

$$\sum_{j=1}^{\infty} a_{kj}^n \|L_j f - f\|_{2\pi} \le \varepsilon \sum_{j=1}^{\infty} a_{kj}^n + K \sum_{j=1}^{\infty} a_{kj}^n \|L_j f_1 - f_1\|_{2\pi}$$
$$+ K \sum_{j=1}^{\infty} a_{kj}^n \|L_j f_2 - f_2\|_{2\pi} + K \sum_{j=1}^{\infty} a_{kj}^n \|L_j f_3 - f_3\|_{2\pi}.$$

By taking limit as $k \to \infty$ and by using (2.1), (2.3) we obtain the desired result. \Box

Using the concept of A-statistical convergence, O. Duman and E. Erkuş [6] obtained a Korovkin type approximation theorem by positive linear operators defined on $C_{2\pi}(\mathbb{R}^m)$, the space of all real-valued continuous and 2π -periodic functions on \mathbb{R}^m $(m \in \mathbb{N})$ endowed with the norm $\|\cdot\|_{2\pi}$ of the uniform convergence. The same result stands for \mathcal{A} -summability.

Theorem 2.2. Let $\mathcal{A} = (A^n)_{n \geq 1}$ be a sequence of infinite non-negative real matrices such that

$$\sup_{n,k}\sum_{j=1}^{\infty}a_{kj}^{n}<\infty$$

and let $\{L_j\}$ be a sequence of positive linear operators mapping $C_{2\pi}(\mathbb{R}^m)$ into $C_{2\pi}(\mathbb{R}^m)$.

159

CRISTINA RADU

Then, for all $f \in C_{2\pi}(\mathbb{R}^m)$ we have

$$\lim_{k \to \infty} \sum_{j=1}^{\infty} a_{kj}^n \|L_j f - f\|_{2\pi} = 0,$$

uniformly in n, if and only if

$$\lim_{k \to \infty} \sum_{j=1}^{\infty} a_{kj}^n \|L_j f_p - f_p\|_{2\pi} = 0 \quad (p = 1, 2, \dots, (2m+1)),$$

uniformly in n, where $f_1(t_1, t_2, \dots, t_m) = 1$, $f_p(t_1, t_2, \dots, t_m) = \cos t_{p-1}$ $(p = 2, 3, \dots, m+1)$, $f_q(t_1, t_2, \dots, t_m) = \sin t_{q-m-1}$ $(q = m+2, \dots, 2m+1)$.

3. Particular cases

Taking $A^n = I$, I being the identity matrix, Theorem 2.1 reduces to Theorem A.

If $A^n = A$, for some matrix A, then \mathcal{A} -summability is the ordinary matrix summability by A.

Note that statistical convergence is a regular summability method. Considering Theorem B and our Theorem 2.1 we obtain the next result.

Corollary 3.1. Let $\mathcal{A} = (A^n)_{n \in \mathbb{N}}$ be a sequence of non-negative regular summability matrices and let $\{L_j\}$ be a sequence of positive linear operators mapping $C_{2\pi}(\mathbb{R})$ into $C_{2\pi}(\mathbb{R})$.

Then, for all $f \in C_{2\pi}(\mathbb{R})$ we have

$$st_{A_n} - \lim_{j \to \infty} \|L_j f - f\|_{2\pi} = 0$$
, uniformly in n

if and only if

 $st_{A_n} - \lim_{i \to \infty} \|L_j f_i - f_i\|_{2\pi} = 0$ (i = 1, 2, 3), uniformly in n,

where $f_1(t) = 1$, $f_2(t) = \cos t$, $f_3(t) = \sin t$ for all $t \in \mathbb{R}$.

 $\mathcal A\text{-}\mathrm{SUMMABILITY}$ AND APPROXIMATION OF CONTINUOUS PERIODIC FUNCTIONS

References

- [1] Atlihan, Ö.G., Orhan, C., *Matrix summability and positive linear operators*, Positivity (accepted for publication).
- [2] Bell, H.T., Order summability and almost convergence, Proc. Amer. Math. Soc., 38(1973), 548-552.
- [3] Duman, O., Khan, M.K., Orhan, C., A-statistical convergence of approximating operators, Math. Inequal. Appl., 6(4)(2003), 689-699.
- [4] Duman, O., Statistical approximation for periodic functions, Dem. Math., 36(4)(2003), 873-878.
- [5] Duman, O., Orhan, C., Statistical approximation by positive linear operators, Studia Math., 161(2)(2004), 187-197.
- [6] Duman, O., Erkuş, E., Approximation of continuous periodic functions via statistical convergence, Computers & Mathematics with Applications, 52(2006), issues 6-7, 967-974.
- [7] Gadjiev, A.D., Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(2002), 129-138.
- [8] Korovkin, P.P., Linear operators and approximation theory, India, Delhi, 1960.

BABEŞ-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, STR. KOGĂLNICEANU NR. 1, RO-400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: rcristina@math.ubbcluj.ro