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Abstract. The purpose of this paper is to give a formula for computing

the value of a financial option, using the binomial method.

1. Introduction

Binomial methods for valuing options and other derivative securities arise

from discrete random walk models of the underlying security. This happens because

the movement of asset prices is a random walk. It can be modeled, but any such

model must incorporate a degree of randomness.

In valuating an option, the Black-Scholes formula is mostly used, the solution

being obtained numerically, using the finite difference method, with serial and/or

parallel algorithms (see [1], [2], [4]).

As is stated in [3] and [5], the binomial method is a particular case of the

explicit finite difference method. Using this method, several serial and parallel algo-

rithms are given. In what follows, we give a general formula for computing the value

of an option, starting with discrete values at expiry date and using binomial methods.

2. Asset Price Random Walk

The theory of option pricing is based on the assumption that we do not know

tomorrow’s values of asset prices. We may use, anyway, the past history of the asset
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value, which tells us what are the likely jumps in asset price, what are their mean and

variance and, more generally, what is the likely distribution of future asset prices.

It is known that asset prices move randomly. In order to model this move-

ment, for each change in asset price, a return is associated, defined to be the change

in the price divided by the original value (for more details, see [5]).

In order to get the equation which modeled this random walk, we consider

that at time t, the asset price is S. In a small subsequence time interval, dt, the

value S changes to S +dS. The corresponding return,
dS

S
, will be decomposed in two

parts. One is predictable, deterministic, denoted by µdt, where µ is a measure of the

average rate of growth of the asset price.

Note. In simple models, µ is taken to be a constant.

The second contribution to
dS

S
models the random change in the asset price in

response to external effects, such as unexpected news. It is represented by a random

sample drawn from a normal distribution with mean zero and adds a term, σdX.

Here, σ is a number called the volatility, which measures the standard deviation

of the returns. The quantity dX is the sample from a normal distribution, with the

mean zero and variance, dt.

We all this in mind, we obtain the stochastic differential equation

dS

S
= σdX + µdt (2.1)

which is the mathematical representation of our simple recipe for generating asset

prices.

3. Binomial Methods

3.1. Discrete random walks

In order to obtain binomial methods, we started from the idea that the con-

tinuous random walk given by (2.1) may be modeled by a discrete random walk, with

the following properties:
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• the asset price S changes only at the discrete times δt, 2δt, 3δt, . . . up to

Mδt = T , the expiry date of derivative security. We use δt instead of dt to denote

the small but non-infinitesimal time-steps between movements in asset price.

• if the asset price is Sm at time step mδt then at time (m + 1)δt it will take

one of only two possible values; uSm > Sm or vSm > Sm. It means that the asset

price may move from S up to uS or down to vS. This is equivalent to the fact that

there are only two returns
δS

S
possible at each time step: u − 1 > 0 and v − 1 < 0,

and these two returns are the same for all time steps.

• the probability, p, of S moving up to uS is known (as the probability (1−p)

of S moving down to vS).

Starting with a given value of the asset price (for example, to day’s asset

price) the remaining life-time of the derivative security is divided up into M time-

steps of size δt = (T − t)/M . The asset price S is assumed to move only at times mδt

for m = 1, 2, . . . ,M . Then, a tree of all possible asset prices is created. This tree

is constructed by starting with the given value S, generating the two possible asset

prices (uS and vS) at the first time-step, then the three possible asset prices (u2S,

uvS and v2S) at the second time-step, and so on, until the expiry time is reached.

Remark. We observe that after m time-steps, there are only m + 1 possible

asset prices.

3.2. Risk-neutral world

Another assumption in getting the binomial methods is a risk-neutral world.

Under this circumstances, we may assume that the investitors are risk-neutral, and

that the return from the underlying is the risk-free interest rate. Then, µ from (2.1),

which does not appear into the Black-Scholes equation, is replaced by r, which appears

in it and defined the interest rate.

So, in a risk-neutral world, equation (2.1) is replaced by

dS

S
= σdX + rdt. (3.1)
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The value of an option is then determined by calculating the present value

of its expected return at expiry with the previous modification to the random walk.

Having this in mind and, in addition, the fact that the present value of any amount at

time T will be that amount discounted by multiplying by e−r(T−t) (for more details,

see [5]), we may write the value V m of the derivative security at time-step mδt as

the expected value of the security at time-step (m + 1)δt discounted by the risk-free

interest rate r:

V m = E(e−rδt · V m+1) (3.2)

Remark. Relation (3.2) is another way of interpreting the Black-Scholes

formula.

3.3. How does a binomial method work

In a binomial method, we first build a tree of possible values of asset prices

and their probabilities, given an initial asset price, then use this tree to determine the

possible asset prices at expiry. The possible values of the security at expiry can then

be calculated and, by working back, according with (3.2), the security can be valued.

In order to build up the tree of possible asset prices, we start at the current

time t = 0. We assume that at this time we know the asset price, S0
0 . Then, at next

time-step, δt, there are two possible asset prices: S1
1 = uS0

0 and S1
0 = vS0

0 . At the

following time-step, 2δt, there are three possible asset prices: S2
2 = u2S0

0 , S2
1 = uvS0

0

and S2
0 = v2S0

0 . At the third time-step, 3δt, the possible values are: S3
3 = u3S0

0 ,

S3
2 = u2vS0

0 , S3
1 = uv2S0

0 and S3
0 = v3S0

0 , and so on.

At the m-th time-steps, mδt, there are m + 1 possible values of the asset

price,

Sm
n = un · vm−n · S0

0 , n = 0, 1, . . . ,m (3.3)

Remark. In (3.3), Sm
n denotes the n-th possible value S at time-step mδt,

whereas vn and un denote v and u raised to the n-th power.

At the final time-step, Mδt, we have M + 1 possible values of the underlying

asset, and we know all of them.
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4. Valuing the Option

In what follows, we suppose that we know the payoff function for our deriva-

tive security and that it depends only on the values of the underlying asset at expiry.

Then, we are able to value the option at expiry, i.e. time-step Mδt. For example, for

a call option, we find that

V M
n = max(Sm

n − E, 0), n = 0, 1, . . . ,M (4.1)

where E is the exercise price and V M
n denotes the n-th possible value of the call at

time-step M .

Then, we can find the expected value of the derivative security at the time-

step prior to expiry, (M−1)δt, and for possible asset price SM−1
n , n = 0, 1, . . . ,M−1,

since we know the probability of an asset priced at SM−1
n moving to SM

n+1 during a

time-step is p, and the probability of it moving to SM
n is (1−p). Using the risk-neutral

argument, we can calculate the value of the security at each possible asset price for

the time-step (M − 1). Then, for (M − 2), and so on, back to time-step 0. This gives

us the value of our option at the current time.

5. The Case of European Option

Let V m
n denotes the value of the option at time-step mδt and asset price Sm

n

(where 0 ≤ n ≤ m). According with (3.2), we calculate the expected value of the

option at time-step mδt from the values at time-step (m + 1)δt and discount in order

to obtain the present value using the risk-free interest rate, r:

erδt · V m
n = p · V m+1

n+1 + (1− p) · V m+1
n (5.1)

which gives:

V m
n = e−rδt(p · V m+1

n+1 + (1− p) · V m+1
n ) (5.2)

for every n = 0, 1, . . . ,m.

As we know the value of V M
n , n = 0, 1, . . . ,M from the payoff function, as

in (4.1), we can, recursively, determine the values V m
n for each n = 0, 1, . . . ,m, for

m < M to arrive at the current value of the option, V 0
0 .
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As in [5], the computation (5.2) may be permorned step by step, in M steps,

to get the value V 0
0 . We give another possible computation, based on the following

theorem:

Theorem 1. The value of the option at time-step m, 0 ≤ m ≤ M , V m
n ,

for every 0 ≤ n ≤ m can be calculated using only the values at expiry time, V M
n ,

0 ≤ n ≤ m, according with the formula:

Cm
n =

m∑
n=0

An · V M
n ,

for every 0 ≤ m ≤ M , where An, 0 ≤ n ≤ m are the binomial coefficients of (α+β)m,

where α = e−rδtp and β = e−rδt(1− p).

Proof. Using the notation α and β for the coefficients in (5.2), we have

V m
n = αV m+1

n+1 + βV m+1
n , (5.3)

for fixed m, (m < M) and 0 ≤ n ≤ m, or, in matriceal form:
V m

0

V m
1

...

V m
m

 = α


V m+1

1

V m+1
2

...

V m+1
m+1

 + β


V m+1

0

V m+1
1

...

V m+1
m

 (5.4)

Knowing the values V M
n , n = 0, 1, . . . ,M , we may compute the value V M−1

n :

V M−1
n = αV M

n+1 + βV M
n , n = 0, 1, . . . ,M − 1.

Then, at the step (M − 2), we get:

V M−2
n = α2V M

n+2 + αβV M
n+1 + β2V M

n , n = 0, . . . ,M − 2

and

V M−3
n = α3V M

n+3 + α2βV M
n+2 + αβ2V M

n+1 + β3V m
n , n = 0, . . . ,M − 3

and so on, finally:

V 0
0 =

M∑
i=0

Ai · V M
i

where Ai are the binomial coefficients of (α + β)M . �
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6. Conclusions

This method of computing the value of an option is more economical from

time and memory space point of view than a serial computation made step by step,

according with the step-time m. Our result indicates the resemblance of the binomial

method with the finite-differences way of computation. The speed of computation

can also be reduced by parallel calculus.
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Str. M. Kogălniceanu Nr.1, 400084 Cluj-Napoca, Romania

E-mail address: ioana@math.ubbcluj.ro

51


