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ON SUPERCONVERGENT SPLINE COLLOCATION METHODS
FOR THE RADIOSITY EQUATION

SANDA MICULA

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. In this paper we study collocation methods based on piecewise

polynomial interpolation for the radiosity equation. We give a brief outline

of this equation and its properties. With a special choice of interior nodes,

we show that interpolation of degree r of the solution leads to an error

in the collocation method of O
(
hr+1

)
, where h is the mesh size of the

triangulation. We conclude the paper by giving superconvergence results,

considering separately the case where r is odd and the case where r is even.

1. The radiosity equation

Radiosity is a method of describing illumination based on a detailed analysis

of light reflections off diffuse surfaces. It is typically used to render images of the

interior of buildings. In computer graphics, the computation of lighting can be done

via radiosity.

1.1. Definition. Properties

Radiosity is defined as being the energy per unit solid angle that leaves a sur-

face. The radiosity equation is a mathematical model for the brightness of a collection

of one or more surfaces. The equation is

u(P )− ρ(P )
π

∫
S

u(Q)G(P,Q)V (P,Q)dSQ = E(P ), P ∈ S (1)
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where u(P ) is the radiosity, or the brightness, at P ∈ S. E(P ) is the emissivity at

P ∈ S, the energy per unit area emitted by the surface.

The function ρ(P ) gives the reflectivity at P ∈ S, i. e. the bidirectional

reflection distribution function. We have that 0 ≤ ρ(P ) < 1, with ρ(P ) being 0

where there is no reflection at all at P . The radiosity equation is derived from the

rendering equation under the radiosity assumption: all surfaces in the environment

are Lambertian diffuse reflectors. What this means is that the reflectivity ρ(P ) is

independent of the incoming and outgoing directions and, hence, of the angle at

which the reflection takes place. Thus, ρ(P ) can be taken out from under the integral

of a more general formulation (the rendering equation, see Cohen and Wallace [5]),

leading to (1).

The function G, a geometric term, is given by

G(P,Q) =
[(Q− P ) · nP ] [(P −Q) · nQ]

|P −Q|4

=
cos θP · cos θQ

|P −Q|2
(2)

where nP is the inner unit normal to S at P , θP is the angle between nP and Q−P ,

and nQ and θQ are defined analogously.

The function V (P,Q) is a visibility function. It is 1 if the points P and Q are

“mutually visible” (meaning they can “see each other” along a straight line segment

which does not intersect S at any other point), and 0 otherwise. Surfaces S for which

V ≡ 1 on S are called unoccluded, and this is the case that we will consider here.

More about the radiosity equation can be found in Cohen and Wallace [5].

We can write (1) in the form

u(P )−
∫
S

K(P,Q)u(Q)dSQ = E(P ), P ∈ S (3)

with

K(P,Q) =
ρ(P )

π
G(P,Q)V (P,Q), P,Q ∈ S (4)

or, in operator form

(I −K)u = E (5)
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Let S be a smooth surface, although not necessarily connected. Later on,

more assumptions on the surface S will be made.

The function G(P,Q) given in (2) has a singularity at P = Q and is smooth

otherwise. Since this function plays an important role in the study of the solvability

of equation (1), we give in the next lemma some of its properties.

Lemma 1. Let S be a smooth Ci+1 surface to which the Divergence Theorem can be

applied. Let P ∈ S. Then

a) |G(P,Q)| ≤ c1, P,Q ∈ S, P 6= Q;

b) G(P,Q) ≥ 0, for Q ∈ S;

c)
∫
S

G(P,Q) dSQ = π;

d) if S is the unit sphere, then G(P,Q) ≡ 1
4
;

e)
∣∣Di

QG(P,Q)
∣∣ ≤ c2

|P −Q|i
, P 6= Q, c2 independent of P and Q.

For the proof, see [10].

Since the surface S is smooth and by Lemma 1, it is relatively easy to prove

that the integral operator K of (5) is compact as an operator on either C(S) or L2(S)

into itself (see Mikhlin [13] pp. 160-162).

1.2. Solvability and Regularity of the Radiosity Equation

The solvability theory for the radiosity equation (1) is relatively straightfor-

ward, being based on the Geometric Series Theorem.

Let S be a smooth unoccluded surface (not necessarily connected). Thus

the normal nP is to be a continuous function of P ∈ S. In addition to the radiosity

assumption (discussed in Section 1.1., we will also assume that the reflectivity function

ρ(P ) ∈ C(S) and that it satisfies

‖ρ‖∞ < 1 (6)
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From the physical point of view, what (6) means is that the surface does not reflect

100% of all the light that it receives, which is a reasonable assumption.

For the regularity of the solution of (1), we have

Lemma 2. Let m ≥ 0 be an integer, S a smooth unoccluded surface. Assume the

reflectivity function ρ ∈ Cm+1(S) and it satisfies (6). Then

u ∈ Cm(S) ⇒ Ku ∈ Cm+1(S) (7)

Theorem 3. Let m ≥ 0 be an integer. Let Ŝ be the boundary of a convex open

set Ω, and assume Ŝ is a surface to which the Divergence Theorem can be applied.

Assume S is a smooth (possibly disconnected) unoccluded surface S ⊂ Ŝ. Also, assume

ρ,E ∈ Cm(S). Then

(a) The equation (1) is uniquely solvable for each E, with the solution u(P )

satisfying

‖u‖∞ ≤ ‖E‖∞
1− ‖K‖

(8)

(b) The solution u ∈ Cm(S).

For the proof, see [10].

2. Preliminaries for Collocation Methods

Let S be a smooth unoccluded surface in IR3, which can be written as

S = S1 ∪ S2 ∪ ... ∪ SJ (9)

with each Sj the continuous image of a polygonal region in the plane

Fj : Rj
1−1−→
onto

Sj , j = 1, ..., J (10)

Generally, we will need to assume that the mappings Fj are several times continuously

differentiable.

To create triangulations for S, we first triangulate each Rj and then map this

triangulation onto Sj . Let {∆̂j
n,k | k = 1, ..., nj} be a triangulation of Rj , and then

define

∆j
n,k = Fj(∆̂

j
n,k)

148



ON SUPERCONVERGENT SPLINE COLLOCATION METHODS FOR THE RADIOSITY EQUATION

This yields a triangulation of S, which we refer to collectively as Tn = {∆1, ...,∆n}.

Let

h ≡ hn = max
1≤j≤J

max
1≤k≤nj

diameter
(
∆̂j

n,k

)
(11)

be the mesh size of this triangulation. (The number of triangles n is to be understood

implicitly; from now on, we dispense with it.)

We make the following assumptions concerning this triangulation:

T1. The set of all vertices of the surface S is a subset of the set of all vertices

of the triangulation Tn.

T2. The union of all edges of S is contained in the union of all edges of all

triangles in Tn.

T3. If two triangles in Tn have a nonempty intersection, then that intersection

consists either of (i) a single common vertex, or (ii) all of a common edge.

We call triangulations satisfying T1 - T3 conforming triangulations.

Let ∆k be some element from Tn, and let it correspond to some ∆̂k, say

∆̂k ⊂ Rj and ∆k = Fj(∆̂k). Let {v̂k,1, v̂k,2, v̂k,3} denote the vertices of ∆̂k. Define

mk : σ
1−1−→
onto

∆k by

mk(s, t) = Fj(uv̂k,1 + tv̂k,2 + sv̂k,3), (s, t) ∈ σ, u = 1− s− t (12)

(an affine mapping), where σ is the unit simplex σ = {(s, t)|0 ≤ s, t, s + t ≤ 1}.

Now we can define interpolation and numerical integration over a triangular surface

element ∆ by means of a similar formula over σ.

Let α be a given constant with 0 ≤ α ≤ 1
3
. Define the interpolation nodes by

qi,j =
(

i + (r − 3i)α
r

,
j + (r − 3j)α

r

)
, i, j ≥ 0, i + j ≤ r (13)

These fr =
(r + 1)(r + 2)

2
nodes form a uniform grid over σ. If α = 0, some of these

points are on the edges of σ. If α > 0, then they are symmetrically placed points in

the interior of σ. To avoid problems with the unit normal and with the nonsmoothness

of the kernel, throughout this paper we want to consider only nodes that are interior

to the triangular elements, so we will work with 0 < α <
1
3
.
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Denote by li,j(s, t) the corresponding Lagrange interpolation basis functions.

Then for a given g ∈ C(σ), the formula

pr(s, t) =
∑

0≤i+j≤r

g(qi,j)li,j(s, t) (14)

is the unique polynomial of degree r that interpolates g(s, t) at the nodes

{qi,j | i, j ≥ 0, i + j ≤ r}.

Denote the nodes and the basis functions collectively by {q1, ..., qfr
} and {l1, ..., lfr

}.

So, now we have the interpolation formula

g(s, t) ≈
fr∑

j=1

g(qj)lj(s, t), g ∈ C(S) (15)

Integrating (15) over σ, we obtain the quadrature formula∫
σ

g(s, t)dσ ≈
fr∑

j=1

ωjg(qi,j) (16)

where ωj =
∫
σ

lj(s, t)dσ. Since the formula (15) is exact for all polynomials of degree

≤ r, formula (16) has degree of precision at least r.

Let

Png(mk(s, t)) =
fr∑

j=1

g(mk(qj))lj(s, t), P = mk(s, t) ∈ ∆k (17)

Define a collocation method using (17) (the collocation nodes coincide with the in-

terpolation nodes). Substitute

un(P ) =
fr∑

j=1

un(vk,j)lj(s, t), P ∈ mk(s, t) ∈ ∆k

vk,j = mk(qj), k = 1, ..., n (18)

into (1). This leads to the linear system

un(vi) − ρ(P )
π

n∑
k=1

nfr∑
j=1

un(vk,j)
∫
σ

G (vi,mk(s, t)) lj(s, t)

· |(Dsmk ×Dtmk) (s, t)| dσ = E(vi), i = 1, ..., nfr (19)
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This can be written abstractly as

(I − PnK)un = PnE (20)

Also, introduce the iterated collocation solution

ûn = E +Kun (21)

We will give an error analysis based on standard projection operator theory

(e. g. see Atkinson [2] Section 4.2). We have

Theorem 4. Assume S is a smooth unoccluded surface in IR3, and assume S ⊂ Ŝ,

with Ŝ the type of surface required in Lemma 1. Assume S satisfies (9) and (10) with

each Fj ∈ Cr+2. Then for all sufficiently large n, say n ≥ n0, the operators I − PnK

are invertible on C(S) and have uniformly bounded inverses. Moreover, for the true

solution u of (1) and the solution un of (20)

‖u− un‖∞ ≤
∥∥(I − PnK)−1

∥∥ ‖(u− Pnu)‖∞ , n ≥ n0 (22)

Furthermore, if the emissivity E ∈ Cr+1(S), then

‖u− un‖∞ ≤ O(hr+1), n ≥ n0 (23)

3. Superconvergent Collocation Methods

So we know that under suitable assumptions, interpolation of degree r leads

to an error of order O(hr+1) in the collocation method associated with it. Sometimes

at the collocation node points, the collocation method converges more rapidly than

over all S, in which case

lim
n→∞

max
1≤i≤nfr

|u(vi)− ûn(vi)|

‖u− un‖∞
= 0 (24)

Such methods are superconvergent at the collocation node points.

Let us examine more carefully the terms in (24). For simplicity, we work

with the solution ûn of the iterated collocation equation (21). This should cause no

problems, since we know that the convergence of ûn to u is at least as rapid as that
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of the solution of the collocation equation (20) to u. Moreover, û(vi) = un(vi) at all

collocation nodes.

By looking at the linear system associated with

(I − KPn)(u− ûn) = K(u− Pnu) (25)

we have

max
1≤i≤nfr

|u(vi)− ûn(vi)| ≤ c max
1≤i≤nfr

|K(I − Pn)u(vi)| (26)

(see Atkinson [2] p. 449). So, to find superconvergent methods, now we focus on

finding errors for K(I − Pn)u(vi).

Let τ ⊂ IR2 be a planar triangle with vertices {v1, v2, v3} and define the

mapping mτ : σ −→ τ as in (12). For g ∈ C(τ), define

Lτg(x, y) =
fr∑

j=1

g(mτ (qj))lj(s, t) (27)

which is a polynomial of degree r in the parametrization variables s and t, interpo-

lating g at the nodes {mτ (q1), ...,mτ (qfr
)}.

Define a numerical integration formula over τ by∫
τ

g(x, y)dτ ≈
∫
τ

Lτg(x, y)dτ (28)

which has degree of precision at least r. In what follows, for differentiable functions

g, we will use the notation

|Dkg(x, y)| = max
0≤i≤k

∣∣∣∣ ∂kg(x, y)
∂xi∂yk−i

∣∣∣∣ (29)

In investigating superconvergent collocation methods based on interpolation

r, we have to distinguish two cases: where r is odd and where r is even.

3.1. Interpolation of Odd Degree

Consider the quadrature formula (28), based on interpolation of degree r,

an odd number. It has degree of precision at least r. Suppose we can find a value

0 < α0 <
1
3

, such that for α = α0, formula (28) has degree of precision r + 1. Then,

if we extend it to a rectangle, it will have degree of precision r + 2. We have the

following result.
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Lemma 5. Let τ1 and τ2 be planar right triangles that form a square R of length h

on a side. Let g ∈ Cr+3(R). Let Φ ∈ L1(R) two times differentiable with derivatives

of order 1 and 2 in L1(R). Assume α = α0. Then∣∣∣∣∣∣
∫
R

Φ(x, y)(I − Lτ )g(x, y)dτ

∣∣∣∣∣∣≤chr+3

∫
R

(|Φ|+ |DΦ|+ |D2Φ|)dτ

 max
R

i=r+1,r+2,r+3

{
|Dig|

}
(30)

with Lτg(x, y) ≡ Lτi
g(x, y), where (x, y) ∈ τi, i = 1, 2.

If integrating over a single triangle, the bound is given by

Lemma 6. Let τ be a planar right triangle and assume the two sides which form the

right angle have length h. Assume α = α0. Let g ∈ Cr+2(τ),Φ ∈ L1(τ) differentiable

with first derivatives in L1(τ). Then∣∣∣∣∣∣
∫
τ

Φ(x, y)(I − Lτ )g(x, y)dτ

∣∣∣∣∣∣ ≤ chr+2

∫
τ

(|Φ|+ |DΦ|)dτ

 ·max
τ

{
|Dr+1g|, |Dr+2g|

}
(31)

where c denotes a generic constant.

For the proofs, see [10].

Remark. These results can be extended to general triangles, but then the derivatives

of g and Φ will involve the mapping mτ from (12). Let h(τ) denote the diameter of

τ and h∗(τ) the radius of the circle inscribed in τ and tangent to its sides. Define

r(τ) =
h(τ)
h∗(τ)

(32)

Assume that for our triangulations Tn = {∆n,k}, n ≥ 1, we have

sup
n

[
max

∆n,k∈Tn

r(∆n,k)
]

< ∞ (33)

Condition (33) prevents the triangles ∆n,k from having angles which approach 0 as

n →∞.

Now, we want to apply these results to the individual subintegrals in

Ku(vi) =
ρ(vi)

π

n∑
k=1

∫
σ

G (vi,mk(s, t))u (mk(s, t))

· |(Dsmk ×Dtmt) (s, t)| dσ, i = 1, ..., 6n (34)
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with

g(s, t) = u (mk(s, t)) |(Dsmk ×Dtmt) (s, t)|

Φ(s, t) = G (vi,mk(s, t)) (35)

Theorem 7. Assume the hypotheses of Theorem 4, with each Fj ∈ Cr+2. Assume

u ∈ Cr+2(S). Assume the triangulation Tn of S satisfies (33) and that it is symmetric.

For those integrals in (34) for which vi ∈ ∆k, assume that all such integrals are

evaluated with an error of O(hr+3). Assume α = α0. Then

max
1≤i≤nfr

|u(vi)− ûn(vi)| ≤ chr+3 log h (36)

Proof. We bound

max
1≤i≤nfr

|K(I − Pn)u(vi))|

By our assumption, the error in evaluating the integral of (34) over ∆∗ will

be O(hr+3).

Partition T ∗n into parallelograms to the maximum extent possible. Denote by

T (1)
n the set of all triangles making up such parallelograms and let T (2)

n contain the

remaining triangles. Then

T ∗n = T (1)
n ∪ T (2)

n

It is easy to show that the number of triangles in T (1)
n is O(n) = O(h−2), and the

number of triangles in T (2)
n is O(

√
n) = O(h−1).

It can be shown that all but a finite number of the triangles in T (2)
n , bounded

independent of n, will be at a minimum distance from vi. That means that the

triangles in T (2)
n are “far enough” from vi, so that the function G(vi, Q) is uniformly

bounded for Q being in a triangle in T (2)
n .

By Lemma 6, the contribution to the error coming from the triangles in T (2)
n

will be O
(
hr+3‖Dr+2u‖∞

)
.
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Using Lemma 5 we have that the contribution to the error coming from

triangles in T (1)
n is of order

chr+3

∫
S−∆∗

2∑
j=0

1
|vi −Q|j

dSQ (37)

Using a local representation of the surface and then using polar coordinates,

the expression in (37) is of order

chr+3
(
h2 + h + log h

)
= O(hr+3 log h)

Combining the errors arising from the integrals over ∆∗, T (1)
n , and T (2)

n , we have (36).

3.2. Interpolation of Even Degree

Analogously, consider the quadrature formula (28), based on interpolation of

degree r, an even number, which has degree of precision at least r. Considered over

a rectangle formed by two symmetric triangles, it has degree of precision r + 1, since

r is an even number. Define a collocation method with it as before. We have:

Lemma 8. Let τ1 and τ2 be planar right triangles that form a square R of length h

on a side. Let g ∈ Cr+2(R). Let Φ ∈ L1(R) differentiable with first order derivatives

in L1(R). Then∣∣∣∣∣∣
∫
R

Φ(x, y)(I − Lτ )g(x, y)dτ

∣∣∣∣∣∣ ≤ chr+2

∫
τ

(|Φ|+ |DΦ|)dτ

 · max
R

i=r+1,r+2

{
|Dig|

}
(38)

with Lτg(x, y) ≡ Lτi
g(x, y), where (x, y) ∈ τi, i = 1, 2.

For integration over one triangle only, the term in h in (38) is only hr+1. We use

these results to prove the following superconvergence result.

Theorem 9. Assume the hypotheses of Theorem 4, with each Fj ∈ Cr+2. Assume

u ∈ Cr+2(S). Assume the triangulation Tn of S satisfies (33) and that it is symmetric.

For those integrals in (34) for which vi ∈ ∆k, assume that all such integrals are

evaluated with an error of O(hr+2). Then

max
1≤i≤nfr

|u(vi)− ûn(vi)| ≤ chr+2 (39)

The proof of Theorem 9 is similar to that of Theorem 7.
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