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COMPACT OPERATORS ON SPACES
WITH ASYMMETRIC NORM

S. COBZAŞ

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The aim of the present paper is to define compact operators on

asymmetric normed spaces and to study some of their properties. The dual

of a bounded linear operator is defined and a Schauder type theorem is

proved within this framework. The paper contains also a short discussion

on various completeness notions for quasi-metric and for quasi-uniform

spaces.

1. Introduction

An asymmetric norm on a real vector space X is a functional p : X → [0,∞)

satisfying the conditions

(AN1) p(x) = p(−x) = 0 ⇒ x = 0; (AN2) p(αx) = αp(x);

(AN3) p(x+ y) ≤ p(x) + p(y),

for all x, y ∈ X and α ≥ 0. A quasi-metric on a set X is a mapping ρ : X×X → [0,∞)

satisfying the conditions

(QM1) ρ(x, y) = ρ(y, x) = 0 ⇐⇒ x = y; (QM2) ρ(x, z) ≤ ρ(x, y) + ρ(y, z),

for all x, y, z ∈ X. If the mapping ρ satisfies only the conditions ρ(x, x) = 0, x ∈ X,

and (QM2), then it is called a quasi-pseudometric. If p is an asymmetric norm on a

vector space X, then the pair (X, p) is called an asymmetric normed space. Similarly,
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(X, ρ) is called a quasi-metric space. If p is an asymmetric norm on a vector space

X, then ρ(x, y) = p(y − x), x, y ∈ X, is a quasi-metric on X. A closed, respectively

open, ball in a quasi-metric space is defined by

Bρ(x, r) = {y ∈ X : ρ(x, y) ≤ r}, B′
ρ(x, r) = {y ∈ X : ρ(x, y) < r},

for x ∈ X and r > 0. In the case of an asymmetric norm p one denotes by

Bp(x, r), B′
p(x, r) the corresponding balls and by Bp = Bp(0, 1), B′

p = B′
p(0, 1), the

unit balls. In this case the following equalities hold

Bp(x, r) = x+ rBp and B′
p(x, r) = x+ rB′

p.

The family of sets B′
ρ(x, r), r > 0, is a base of neighborhoods of the point x ∈

X for the topology τρ on X generated by the quasi-metric ρ. The family Bρ(x, r), r >

0, of closed balls is also a neighborhood base at x for τρ.

A quasi-uniformity on a set X is a filter U such that

(QU1) ∆(X) ⊂ U, ∀U ∈ U ;

(QU1) ∀U ∈ U , ∃V ∈ U , such that V ◦ V ⊂ U,

where ∆(X) = {(x, x) : x ∈ X} denotes the diagonal of X and, for M,N ⊂ X ×X,

M ◦N = {(x, z) ∈ X ×X : ∃y ∈ X, (x, y) ∈M and (y, z) ∈ N}.

If the filter U satisfies also the condition

(U3) ∀U, U ∈ U ⇒ U−1 ∈ U ,

where

U−1 = {(y, x) ∈ X ×X : (x, y) ∈ U},

then U is called a uniformity on X. The sets in U are called entourages (or vicinities).

For U ∈ U , x ∈ X and Z ⊂ X put

U(x) = {y ∈ X : (x, y) ∈ U} and U [Z] = ∪{U(z) : z ∈ Z}.

A quasi-uniformity U generates a topology τ(U) on X for which the family of sets

{U(x) : U ∈ U}
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is a base of neighborhoods of the point x ∈ X. A mapping f between two quasi-uniform

spaces (X,U), (Y,W) is called quasi-uniformly continuous if for every W ∈ W there

exists U ∈ U such that (f(x), f(y)) ∈ W for all (x, y) ∈ U. By the definition of the

topology generated by a quasi-uniformity, it is clear that a quasi-uniformly continuous

mapping is continuous with respect to the topologies τ(U), τ(W).

If (X, ρ) is a quasi-metric space, then

B′
ε = {(x, y) ∈ X ×X : ρ(x, y) < ε}, ε > 0,

is a basis for a quasi-uniformity Uρ on X. The family

Bε = {(x, y) ∈ X ×X : ρ(x, y) ≤ ε}, ε > 0,

generates the same quasi-uniformity. The topologies generated by the quasi-metric ρ

and by the quasi-uniformity Uρ agree, i.e., τρ = τ(Uρ).

The lack of the symmetry, i.e., the omission of the axiom (U3), makes the

theory of quasi-uniform spaces to differ drastically from that of uniform spaces. An

account of the theory up to 1982 is given in the book by Fletcher and Lindgren

[21]. The survey papers by Künzi [32, 33, 34, 35] are good guides for subsequent

developments. Another book on quasi-uniform spaces is [38].

On the other hand, the theory of asymmetric normed spaces has been de-

veloped in a series of papers [6], [8], [22], [23], [24], [25], [25], [26], following ideas

from the theory of (symmetric) normed spaces and emphasizing similarities as well

as differences between the symmetric and the asymmetric case.

Let (X, p) be an asymmetric normed space. The functional p̄(x) =

p(−x), x ∈ X, is also an asymmetric norm on X, called the conjugate of p, ps(x) =

max{p(x), p̄(x)}, x ∈ X, is a (symmetric) norm on X and the following inequalities

hold

|p(x)− p(y)| ≤ ps(x− y) and |p̄(x)− p̄(y)| ≤ ps(x− y), ∀x, y ∈ X.
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For a quasi-metric space one defines similarly the conjugate of ρ by ρ̄(x, y) =

ρ(y, x) and the associated (symmetric) metric by ρs(x, y) = max{ρ(x, y), ρ(y, x)}, for

x, y ∈ X.

Let (X, p), (Y, q) be two asymmetric normed space. A linear mapping A :

X → Y is called bounded, ((p, q)-bounded if more precision is needed), or semi-

Lipschitz, if there exists a number β ≥ 0 such that

q(Ax) ≤ βp(x), (1.1)

for all x ∈ X. The number β is called a semi-Lipschitz constant for A. For properties of

semi-Lipschitz functions and of spaces of semi-Lipschitz functions see [39, 40, 44, 45].

The operator A is continuous with respect to the topologies τp, τq ((τp, τq)-

continuous) if and only if it is bounded and if and only if it is quasi-uniformly con-

tinuous with respect to the quasi-uniformities Up and Uq (see [20] and [24]). Denote

by (X,Y )[p,q, or simply by (X,Y )[ when there is no danger of confusion, the set of all

(p, q)-bounded linear operators. The set (X,Y )[ need not be a linear subspace but

merely a convex cone in the space (X,Y )# of all linear operators from X to Y, i.e.,

A+B ∈ (X,Y )[ and αA ∈ (X,Y )[, for any A,B ∈ (X,Y )[ and α ≥ 0. Following [24],

we shall call (X,Y )[ a semilinear space. The functional

‖A| = ‖A|p,q = sup{q(Ax) : x ∈ Bp} (1.2)

is an asymmetric norm on the semilinear space (X,Y )[, and ‖A| is the smallest semi-

Lipschitz constant for A, i.e., the smallest number for which the inequality (1.1) holds.

Denote by (X,Y )∗s the space of all continuous linear operators from (X, ps)

to (Y, qs), normed by

‖A‖ = ‖A‖ps,qs
= sup{qs(Ax) : x ∈ X, ps(x) ≤ 1}, A ∈ (X,Y )∗s. (1.3)

It was shown in [24] that (X,Y )[p,q ⊂ (X,Y )∗s, and ‖A| ≤ ‖A‖ for any A ∈

(X,Y )[.

Consider on R the asymmetric norm u(α) = max{α, 0}, α ∈ R. Its conjugate

is ū(α) = max{−α, 0} and us(α) = |α| is the absolute value norm on R. The topology
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τu on R generated by u, called the upper topology of R, has as neighborhood basis of

a point α ∈ R the family of intervals (−∞, α+ ε), ε > 0.

The space of all linear bounded functionals from an asymmetric normed space

(X, p) to (R, u) is denoted by X[
p . Notice that, due to the fact that p is non-negative,

we have

∀x ∈ X, u(ϕ(x)) ≤ βp(x) ⇐⇒ ϕ(x) ≤ βp(x),

for any linear functional ϕ : X → R, so the asymmetric norm of a functional ϕ ∈ X[
p

is given by

‖ϕ| = ‖ϕ|p = sup{ϕ(x) : x ∈ X, p(x) ≤ 1}.

Also, the continuity of ϕ from (X, τp) to (R, τu) is equivalent to its upper

semi-continuity from (X, τp) to (R, | |), (see [1, 2, 20]).

In [24] it was defined the analog of the w∗-topology on the space X[
p, which

we denote by w[, having as a base of w[-neighborhoods of an element ϕ0 ∈ X[
p the

sets

Vx1,...,xn; ε(ϕ0) = {ϕ ∈ X[
p : ϕ(xi)− ϕ0(xi) ≤ ε, i = 1, ..., n}, (1.4)

for n ∈ N, x1, ..., xn ∈ X, and ε > 0.

Since

Vx; ε(ϕ0) ∩ V−x; ε(ϕ0) = {ϕ ∈ X[
p : |ϕ(x)− ϕ0(x)| ≤ ε},

it follows that the topology w[ is the restriction to X[ of the w∗-topology of X∗
s =

(X, ps)∗.

Some results on w[-topology were proved in [24] as, for instance, the analog

of the Alaoglu-Bourbaki theorem: the polar

B[p = {ϕ ∈ X[ : ϕ(x) ≤ 1, ∀x ∈ Bp} (1.5)

of the unit ball Bp of (X, p) is w[-compact. Other results on asymmetric normed

spaces, including separation of convex sets by closed hyperplanes and a Krein-Milman

type theorem, were obtained in [6]. Asymmetric locally convex spaces were considered

in [7]. Best approximation problems in asymmetric normed spaces were studied in [6]

and [8].
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The topology w[ is derived from a quasi-uniformity W[
p on X[

p with a basis

formed of the sets

Vx1,...,xn; ε = {(ϕ1, ϕ2) ∈ X[
p ×X[

p : ϕ2(xi)− ϕ1(xi) ≤ ε, i = 1, ..., n}, (1.6)

for n ∈ N, x1, ..., xn ∈ X and ε > 0. Note that, for fixed ϕ1 = ϕ0, one obtains the

neighborhoods from (1.4).

On the space (X,Y )∗s we shall consider several quasi-uniformities. Namely,

for µ ∈ {p, p̄, ps} and ν ∈ {q, q̄, qs} let Uµ,ν be the quasi-uniformity generated by the

basis

Uµ,ν; ε = {(A,B);A,B ∈ (X,Y )∗s, ν(Bx−Ax) ≤ ε, ∀x ∈ Bµ, }, ε > 0, (1.7)

where Bµ = {x ∈ X : µ(x) ≤ 1} denotes the unit ball of (X,µ). The induced quasi-

uniformity on the semilinear subspace (X,Y )[µ,ν of (X,Y )∗s is denoted also by Uµ,ν
and the corresponding topologies by τ(µ, ν). The uniformity Ups,qs and the topology

τ(ps, qs) are those corresponding to the norm (1.3) on the space (X,Y )∗s.

In the case of the dual space X[
µ we shall use the notation U [µ for the quasi-

uniformity Uµ,u .

2. Completeness and compactness in quasi-metric and in quasi-uniform

spaces

The lack of symmetry in the definition of quasi-metric and quasi-uniform

spaces causes a lot of troubles, mainly concerning completeness, compactness and total

boundedness in such spaces. There are a lot of completeness notions in quasi-metric

and in quasi-uniform spaces, all agreeing with the usual notion of completeness in the

case of metric or uniform spaces, each of them having its advantages and weaknesses.

We shall describe briefly some of these notions along with some of their

properties.

The first one is that of bicompleteness. A quasi-metric space (X, ρ) is called

bicomplete if the associated symmetric metric space (X, ρs) is complete. A bicomplete

asymmetric normed space (X, p) is called also a biBanach space. The existence of a
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bicompletion of an asymmetric normed space was proved in [22]. The notion can be

considered also for an extended (i.e. taking values in [0,∞]) quasi-metric, or for an

extended asymmetric norm on a semilinear space.

In [24] it was defined an extended asymmetric norm on (X,Y )∗s by

‖A|∗p,q = sup{q(Ax) : x ∈ Bp}, A ∈ (X,Y )∗s. (2.1)

The identity mapping idR is continuous from (R, u) to (R, u), but for − idR

we have

‖ − idR |∗u,u = sup{−α : u(α) ≤ 1} ≥ sup{−α : α ≤ 0} = +∞,

because u(α) = 0 ≤ 1 for α ≤ 0. It follows that ‖A|∗p,q can take effectively the value

+∞.

If the asymmetric normed space (Y, p) is bicomplete, then the space (X,Y )∗s

is complete with respect to the symmetric extended norm (‖ |∗p,q)s and (X,Y )[p,q is a

(‖ |∗p,q)s-closed semilinear subspace of (X,Y )∗s, so it is ‖ |p,q-bicomplete (see [24]).

In the case of a quasi-metric space (X, ρ) there are also other completeness

notions. We present them following [42], starting with the definitions of Cauchy

sequences.

A sequence (xn) in (X, ρ) is called

(a) left (right) ρ-Cauchy if for every ε > 0 there exist x ∈ X and n0 ∈ N

such that

∀n ≥ n0, ρ(x, xn) < ε (respectively ρ(xn, x) < ε) ;

(b) ρ-Cauchy if for every ε > 0 there exists n0 ∈ N such that

∀n, k ≥ n0, ρ(xn, xk) < ε ;

(c) left (right)-K-Cauchy if for every ε > 0 there exists n0 ∈ N such that

∀n, k, n ≥ k ≥ n0 ⇒ ρ(xk, xn) < ε (respectively ρ(xn, xk) < ε) ;

(d) weakly left(right) K-Cauchy if for every ε > 0 there exists n0 ∈ N such

that

∀n ≥ n0, ρ(xn0 , xn) < ε (respectively ρ(xn, xn0) < ε).

75



S. COBZAŞ

These notions are related in the following way:

left(right) K-Cauchy ⇒ weakly left(right) K-Cauchy ⇒ left(right) ρ-

Cauchy,

and no one of the above implications is reversible (see [42]).

Furthermore, each ρ-convergent sequence is ρ-Cauchy, but for each of the

other notions there are examples of ρ-convergent sequences that are not Cauchy,

which is a major inconvenience of the theory. Another one is that closed subspaces

of a complete (in some sense) quasi-metric spaces need not be complete. If each

convergent sequence in a regular quasi-metric space (X, ρ) admits a left K-Cauchy

subsequence, then X is metrizable ([36]. This result shows that putting too many

conditions on a quasi-metric, or on a quasi-uniform space, in order to obtain results

similar to those in the symmetric case, there is the danger to force the quasi-metric to

be a metric and the quasi-uniformity a uniformity. In fact, this is a general problem

when dealing with generalizations.

For each of these notions of Cauchy sequence one obtains a notion of sequen-

tial completeness, by asking that each corresponding Cauchy sequence be convergent

in (X, ρ). These notions of completeness are related in the following way:

left (right) ρ-sequentially complete ⇒ weakly left (right) K-sequentially

complete ⇒

⇒ ρ-sequentially complete.

In spite of the obvious fact that left ρ-Cauchy is equivalent to right ρ̄-Cauchy,

left ρ- and right ρ̄-completeness do not agree, due to the fact that right ρ̄-completeness

means that every left ρ-Cauchy sequence converges in (X, ρ̄), while left ρ-completeness

means the convergence of such sequences in the space (X, ρ). For concrete examples,

see [42].
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A subset Y of a quasi-metric space (X, ρ) is called precompact if for every

ε > 0 there exists a finite subset Z of X such that

Y ⊂ ∪{Bρ(z, ε) : z ∈ Z}.

The set Y is called totally bounded if for every ε > 0, Y can be covered by

a finite family of sets of diameter less that ε, where the diameter of a subset A of X

is defined by

diam(A) = sup{ρ(x, y) : x, y ∈ A}.

As it is known, in metric spaces the precompactness and the total bounded-

ness are equivalent notions, a result that is not longer true in quasi-metric spaces,

where precompactness is strictly weaker than total boundedness, see [37] or [38].

In spite of these peculiarities there are some positive results concerning Baire

theorem and compactness. For instance, any compact quasi-metric space is left K-

sequentially complete and precompact. If (X, ρ) is precompact and left ρ-sequentially

complete, then it is sequentially compact (see [19, 42]). Hicks [28] proved some fixed

point theorems in quasi-metric spaces (see also [5, 29])

Notice also that in quasi-metric spaces compactness, countable compactness

and sequential compactness are different notions (see [18] and [31]).

The considered completeness notions can be extended to quasi-uniform spaces

by replacing sequences by filters or nets (for nets, see [52, 53]). Let (X,U) be a quasi-

uniform space, U−1 = {U−1 : U ∈ U} the conjugate quasi-uniformity on X, and

Us = U ∨ U−1 the coarsest uniformity finer than U and U−1. The quasi-uniform

space (X,U) is called bicomplete if (X,Us) is a complete uniform space. This notion

is useful and easy to handle, because one can appeal to results from the theory of

uniform spaces which is satisfactorily accomplished.

A subset Y of a quasi-uniform space (X,U) is called precompact if for every

U ∈ U there exists a finite subset Z of X such that Y ⊂ U [Z]. The set Y is called

totally bounded if for every U there exists a finite family A1, ..., An of subsets ofX such

that Ai×Ai ⊂ U, i = 1, ..., n, and Y ⊂ ∪ni=1Ai. In uniform spaces total boundedness

and precompactness agree, and a set is compact if and only if it is totally bounded
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and complete. A subset Y of quasi-uniform space (X,U) is totally bounded if and

only if it is totally bounded as a subset of the uniform space (X,Us).

Another notion of completeness is that considered by Sieber and Pervin [49].

A filter F in a quasi-uniform space (X,U) is called U-Cauchy if for every U ∈ U

there exists x ∈ X such that U(x) ∈ F . In terms of nets, a net (xα, α ∈ D) is called

U-Cauchy if for every U ∈ U there exists x ∈ X and α0 ∈ D such that (x, xα) ∈ U for

all α ≥ α0. The quasi-uniform space (X,U) is called U-complete if every U-Cauchy

filter (equivalently, every U-Cauchy net) has a cluster point. If every such filter (net)

is convergent, then the quasi-uniform space (X,U) is called U-convergence complete.

Obviously that convergence complete implies complete, but the converse is not true.

It is clear that this notion corresponds to that of ρ-completeness of a quasi-metric

space. It is worth to notify that the Uρ-completeness of the associated quasi-uniform

space (X,Uρ) implies the ρ-sequential completeness of the quasi-metric space (X, ρ),

but the converse is not true (see [36]). The equivalence holds for the notion of left

K-completeness (which will be defined immediately): a quasi-metric space is left K-

sequentially complete if and only if its induced quasi-uniformity Uρ is left K-complete

([43]).

A filter F in a quasi-uniform space (X,U) is called left K-Cauchy provided

for every U ∈ U there exists F ∈ F such that U(x) ∈ F for all x ∈ F . A net

(xα, α ∈ D) in X is called left K-Cauchy provided for every U ∈ U there exists

α0 ∈ D such that (xα, xβ) ∈ U for all β ≥ α ≥ α0. The quasi-uniform space (X,U) is

called left K-complete if every left K-Cauchy filter (equivalently, every left K-Cauchy

net) converges. If every left K-Cauchy filter converges with respect to the uniformity

Us, then the quasi-uniform space (X,U) is called Smyth complete (see [33] and [51]).

This notion of completeness has applications to computer science, see [50]. In fact,

there are a lot of applications of quasi-metric spaces, asymmetric normed spaces and

quasi-uniform spaces to computer science, abstract languages, complexity, see, for

instance, [23, 27, 41, 46, 47, 48].

78



COMPACT OPERATORS ON SPACES WITH ASYMMETRIC NORM

Künzi et al [36] proved that a quasi-metric space is compact if and only if it is

precompact and left K-sequentially complete, and studied the relations between com-

pleteness, compactness, precompactness, total boundedness and other related notions

in quasi-uniform spaces.

Another useful notion of completeness was considered by Doitchinov [13, 14,

15, 16, 17]. A filter F in a quasi-uniform space (X,U) is called D-Cauchy provided

there exists a co-filter G in X such that for every U ∈ U there are G ∈ G and F ∈ F

such that F ×G ⊂ U. The quasi-uniform space (X,U) is called D-complete provided

every D-Cauchy filter converges. A related notion of completeness was considered by

Andrikopoulos [3]. For a comparative study of the completeness notions defined by

pairs of filters see [10] and [4].

Notice also that these notions of completeness can be considered within the

framework of bitopological spaces in the sense of Kelly [30], since a quasi-metric space

is a bitopological space with respect to the topologies τ(ρ) and τ(ρ̄). For this approach

see the papers by Deak [11, 12]. It seems that the letter K in the definition of left

K-completeness comes from Kelly (see [9]).

3. Compact operators

Recall that a subset Z of an asymmetric normed space (X, p) is called p-

precompact if for every ε > 0 there exist z1, ..., zn ∈ Z such that

∀z ∈ Z, ∃i ∈ {1, ..., n}, p(z − zi) ≤ ε, (3.1)

or, equivalently,

Z ⊂ Uε[{z1, ..., zn}],

where Uε is the entourage

Uε = {(x, x′) ∈ X ×X : p(x′ − x) ≤ ε}

in the quasi-uniformity Up .

One obtains an equivalent notion taking the points zi in X or/and < ε in

(3.1).
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Let (X, p), (Y, q) be asymmetric normed spaces and, as before, let

µ ∈ {p, p̄, ps} and ν ∈ {q, q̄, qs}. (3.2)

A linear operator A : X → Y is called (µ, ν)-compact if the set A(Bµ) is ν-precompact

in Y.

Some properties of compact operators are collected in the following propo-

sition. We shall denote by (X,Y )kµ,ν the set of all linear (µ, ν)-compact operators

from X to Y. Notice that, for µ = ps and ν = qs, the space (X,Y )[ps,qs
agrees

with (X,Y )∗s, the (ps, qs)-compact operators are the usual linear compact operators

between the normed spaces (X, ps) and (Y, qs), so the proposition contains some well

known results for compact operators on normed spaces.

Proposition 3.1. Let (X, p), (Y, q) be asymmetric normed spaces. The following

assertions hold.

1. (X,Y )kµ,ν is a semilinear subspace of (X,Y )[µ,ν .

2. (X,Y )kp,q is τ(p, q̄)-closed in (X,Y )[p,q.

Proof. (1) We give the proof in the case µ = p and ν = q. The other cases can be

treated similarly.

If A : X → Y is (p, q)-compact, then there exists x1, ..., xn ∈ Bp such that

∀x ∈ Bp, ∃i ∈ {1, ..., n}, q(Ax−Axi) ≤ 1. (3.3)

If for x ∈ Bp, i ∈ {1, ..., n} is chosen according to (3.3), then

q(Ax) ≤ q(Ax−Axi) + q(Axi) ≤ 1 + max{q(Axj) : 1 ≤ j ≤ n},

showing that the operator A is (p, q)-bounded.

Suppose that A1, A2 : X → Y are (p, q)-compact and let ε > 0. By the (p, q)-

compactness of the operators A1, A2, there exist x1, ..., xm and y1, ..., yn in Bp such

that

∀x ∈ Bp, ∃i ∈ {1, ...,m}, ∃j ∈ {1, ..., n}, q(A1x−A1xi) ≤ ε and q(A2x−A2xj) ≤ ε.
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It follows that for every x ∈ Bp there exists a pair (i, j) with 1 ≤ i ≤ m and

1 ≤ j ≤ n such that

q(A1x+A2x−A1xi −A2yj) ≤ q(A1x−A1xi) + q(A2x−A2yj) ≤ 2ε,

showing that {A1xi+A2yj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a finite 2ε-net for (A1+A2)(Bp).

The proof of the compactness of αA, for α > 0 and A compact, is immediate

and we omit it.

(2) The τ(p, q̄)-closedness of (X,Y )kp.q .

Let (An) be a sequence in (X,Y )kp,q which is τ(p, q̄)-convergent to A ∈

(X,Y )[p,q .

For ε > 0 choose n0 ∈ N such that

∀n ≥ n0, ∀x ∈ Bp, q̄(Anx−Ax) ≤ ε ( ⇐⇒ q(Ax−Anx) ≤ ε). (3.4)

Let x1, ..., xm ∈ Bp such that An0xi, 1 ≤ i ≤ m, is an ε-net for An0(Bp).

Then for every x ∈ Bp there exists i ∈ {1, ...,m} such that

q(An0x−An0xi) ≤ ε,

so that, by (3.4),

q(Ax−Axi) ≤ q(Ax−An0x) + q(An0x−An0xi) + q(An0xi −Axi) ≤ 3ε.

Consequently, Axi, 1 ≤ i ≤ m, is a 3ε-net for A(Bp), showing that A ∈ (X,Y )kp,q .

Remark 3.2. The assertion (2) of Proposition 3.1 holds for other types of compact-

ness too, i.e. for the spaces (X,Y )kµ,ν with µ, ν as in (3.2), with similar proofs.

4. The dual of a bounded linear operator

Let (X, p), (Y, q) be asymmetric normed spaces and µ, ν as in (3.2). For

A ∈ (X,Y )[µ,ν define A[ : Y [ν → X[
µ by

A[ψ = ψ ◦A, ψ ∈ Y [s . (4.1)
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Obviously that A[ is properly defined, additive and positively homogeneous.

Concerning the continuity we have.

Proposition 4.1. 1. The operator A[ is quasi-uniformly continuous with respect to

the quasi-uniformities U [ν and U [µ on Y [ν and X[
µ , respectively.

2. The operator A[ is also quasi-uniformly continuous with respect to the

w[-quasi-uniformities on Y [ν and X[
µ .

Proof. (1) Take again µ = p and ν = q. For ε > 0 let

Uε = {(ϕ1, ϕ2) ∈ X[
p ×X[

p : ϕ2(x)− ϕ1(x) ≤ ε, ∀x ∈ Bp}.

If ‖A|p,q = 0, then A = 0, so we can suppose ‖A| = ‖A|p,q > 0. Let

Vε = {(ψ1, ψ2) ∈ Y [q × Y [q : ψ2(x)− ψ1(x) ≤ ε/‖A|, ∀x ∈ Bq}.

Taking into account that

∀x ∈ Bp, ϕ2(x)− ϕ1(x) ≤ ε/r ⇐⇒ ∀x′ ∈ rBp, ϕ2(x′)− ϕ1(x′) ≤ ε,

and

∀x ∈ Bp, q(Ax) ≤ ‖A|p(x) ≤ ‖A|,

it follows

A[ψ2(x)−A[ψ1(x) = ψ2(Ax)− ψ1(Ax) ≤ ε,

for all x ∈ Bp, proving the quasi-uniform continuity of A.

(2) For x1, ..., xn ∈ X and ε > 0 let

V = {(ϕ1, ϕ2) ∈ X[
p ×X[

p : ϕ2(xi)− ϕ1(xi) ≤ ε, i = 1, ..., n}

be a w[-entourage in X[
p. Then

U = {(ψ1, ψ2) ∈ Y [q × Y [q : ψ2(Axi)− ψ1(Axi) ≤ ε, i = 1, ..., n},

is a w[-entourage in Y [q and (A[ψ1, A
[ψ2) ∈ V for every (ψ1, ψ2) ∈ U, proving the

quasi-uniform continuity of A[ with respect to the w[-quasi-uniformities on Y [q and

X[
p .
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Now we can prove the analog of the Schauder theorem for the asymmetric

dual.

Theorem 4.2. Let (X, p), (Y, q) be asymmetric normed spaces. If the linear operator

A : X → Y is (p, q)-compact, then A[(B[q) is precompact with respect to the quasi-

uniformity U [p on X[
p.

Proof. For ε > 0 let

Uε = {(ϕ1, ϕ2) ∈ X[
p ×X[

p : ϕ2(x)− ϕ1(x) ≤ ε, ∀x ∈ Bp},

be an entourage in X[
p for the quasi-uniformity U [p .

Since A is (p, q)-compact, there exist x1, ..., xn ∈ Bp such that

∀x ∈ Bp , ∃i ∈ {1, ..., n}, q(Ax−Axi) ≤ ε. (4.2)

By the Alaoglu-Bourbaki theorem, [24, Theorem 4] the set B[q is w[-compact,

so by the (w[, w[)-continuity of the operator A[ (Proposition 4.1), the set A[(B[q) is

w[-compact in X[
p. Consequently, the w[-open cover

Vψ = {ϕ ∈ X[
p : ϕ(xi)−A[ψ(xi) < ε, i = 1, ..., n}, ψ ∈ B[q,

contains a finite subcover Vψk
, 1 ≤ k ≤ m, i.e,

A[(B[q) ⊂
⋃
{Vψk

: 1 ≤ k ≤ m}. (4.3)

Now let ψ ∈ B[q . By (4.3) there exists k ∈ {1, ...,m} such that

A[ψ(xi)−A[ψk(xi) < ε, i = 1, ..., n.

If x ∈ Bp, then, by (4.2), there exists i ∈ {1, ..., n}, such that

q(Ax−Axi) ≤ ε.

It follows

ψ(Ax)− ψk(Ax) =

= ψ(Ax)− ψ(Axi) + ψ(Axi)− ψk(Axi) + ψk(Axi)− ψ(Axi)

≤ 2q(Ax−Axi) + ε ≤ 3ε.
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Consequently,

∀x ∈ Bp , (A[ψ −A[ψk)(x) ≤ 3ε,

proving that

A[(B[q) ⊂ U3ε[{A[ψ1, ..., A
[ψm}].

Comments. As a measure of precaution, we have defined the compactness

of an operator A in terms of the precompactness of the image of the unit ball Bp

by A, rather than by the relative compactness of A(Bp) , as in the case of compact

operators on usual normed spaces. As can be seen from Section 2, the relations

between precompactness, total boundedness and completeness are considerably more

complicated in the asymmetric case than in the symmetric one. To obtain some

compactness properties of the set A(Bp) , one needs a study of the completeness of

the space (X,Y )[µ,ν with respect to various quasi-uniformities and various notions of

completeness, which could be the topic of a further investigation.
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