STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LI, Number 3, September 2006

METRIC SPACE WITH FIXED POINT PROPERTY WITH RESPECT TO CONTRACTIONS

IOAN A. RUS

Dedicated to Professor Stefan Cobzaş at his 60th anniversary

Abstract. In this paper we present some equivalent statements with the fixed point property of a metric space with respect to contractions. These statements are in terms of completeness, Picard operators, fractal operators, minimal displacement, well posedness of fixed point problem and the limit shadowing property.

1. Introduction

Let X be a nonempty set and (X, S(X), M) a fixed point structure on X ([18] and [19]). Let $S_1(X) \subset P(X)$ such that $S(X) \subset S_1(X)$. By definition (X, S(X), M)is maximal in $S_1(X)$ if we have

$$S(X) = \{ A \in S_1(X) \mid f \in M(A) \Rightarrow F_f \neq \emptyset \}.$$

Is an open problem to establish if a given fixed point structure is maximal or not. For example in some concrete structured sets this problem take the following forms:

- Characterize the ordered sets with fixed point property with respect to increasing operators ([3], [5], [10], [11], [18], [19], [22]-[24]).
- Characterize the metric space with fixed point property with respect to continuous operators ([1], [2], [6], [10]).

Received by the editors: 27.03.2006.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. fixed point property, contraction, completeness, fractal operator, minimal displacement, well posedness, shadowing property.

IOAN A. RUS

- Characterize the metric space with fixed point property with respect to contractions ([4], [21], [6]-[10]).
- Characterize the Banach space X with the following property ([10], [19], [20]):

$$Y \in P_{b,cl,cv}(X), f: Y \to Y$$
 nonexpansive $\Rightarrow F_f \neq \emptyset.$

• Characterize the Banach space with the following property ([10], [19], [20]):

 $Y \in P_{wcp,cv}(X), f: Y \to Y$ nonexpansive $\Rightarrow F_f \neq \emptyset.$

The aim of this paper is to present some equivalent statements with the fixed point property of a metric space with respect to contractions.

2. Notations and notions

Let (X, d) be a metric space and $(P_{cp}(X), H_d, \subset)$ the corresponding ordered metric space of fractals. In what follow we shall use the following notations. We denote

 $CT(X, X) := \{ f : X \to X \mid f \text{ is a contraction} \}.$

If $f \in CT(X, X)$ then we denote by $\hat{f} : P_{cp}(X) \to P_{cp}(X), A \mapsto f(A) := \bigcup_{a \in A} f(a)$, the corresponding fractal operator.

$$(UF)_{\widehat{f}} := \{ A \in P_{cp}(X) \mid \widehat{f}(A) \subset A \},$$
$$(LF)_{\widehat{f}} := \{ A \in P_{cp}(X) \mid \widehat{f}(A) \supset A \}.$$

For an operator $f: X \to X$ we denote by $d(f) := \inf\{d(x, f(x)) \mid x \in X\}$ the minimal displacement of f (K. Goebel (1973) ([10], 586)).

To present our results we need the following notions:

Definition 2.1. (F.S. De Blasi and J. Myjak (1989) ([17])). Let (X, d) be a metric space and $f : X \to X$ an operator. The fixed point problem for f is well posed iff

(a)
$$F_f = \{x^*\}$$
;

116

METRIC SPACE WITH FIXED POINT PROPERTY WITH RESPECT TO CONTRACTIONS

(b) if $x_n \in X$, $n \in \mathbb{N}$ and $d(x_n, f(x_n)) \to 0$ as $n \to \infty$, then $d(x_n, x^*) \to 0$ as $n \to \infty$.

Definition 2.2. ([13]) An operator $f : X \to X$ has the limit shadowing property iff $x_n \in X$, $n \in \mathbb{N}$, $d(x_{n+1}, f(x_n)) \to 0$ as $n \to \infty$ imply that there exists $x \in X$ such that $d(x_n, f^n(x)) \to 0$ as $n \to \infty$.

Definition 2.3. A metric space is complete with respect to CT(X, X) iff $f \in CT(X, X)$ implies that $(f^n(x))_{n \in \mathbb{N}}$ converges for all $x \in X$.

Remark 2.1. If $f \in CT(X, X)$ then $(f^n(x))_{n \in \mathbb{N}}$ is a Cauchy sequence for all $x \in X$.

3. Equivalent statements

The main result of this paper is the following

Theorem 3.1. Let (X, d) be a metric space. The following statements are equivalent:

(i) (X, d) has the fixed point property with respect to CT(X, X).

(ii) $f \in CT(X, X)$ implies that f is Picard operator.

(iii) (X, d) is complete with respect to CT(X, X).

(iv) $f \in CT(X, X)$ implies that there exists $x_f^* \in X$ such that $d(f) = d(x_f^*, f(x_f^*))$.

(v) $f \in CT(X, X)$ implies that the fixed point problem for f is well posed.

(vi) $f \in CT(X, X)$ implies that $F_{\hat{f}} \neq \emptyset$.

(vii) $f \in CT(X, X)$ implies that $(UF)_{\widehat{f}} \neq \emptyset$.

(viii) $f \in CT(X, X)$ implies that $(LF)_{\hat{f}} \neq \emptyset$.

(ix) $f \in CT(X, X)$ implies that there exists $x \in X$ such that $(f^n(x))_{n \in \mathbb{N}}$ converges.

Proof. (i) \Rightarrow (ii). Let f be an α -contraction with $F_f = \{x^*\}$. Then $d(f^n(x), x^*) = d(f^n(x), f^n(x^*)) \leq \alpha^n d(x, x^*) \to 0$ as $n \to \infty$, for all $x \in X$. So, f is Picard operator.

(ii) \Rightarrow (iii). Follows from the definition of Picard operators.

117

IOAN A. RUS

(iii) \Rightarrow (iv). Let $f \in CT(X, X)$. It is clear that (iii) implies (ii). So, x_f^* is the fixed point of f.

(iv) \Rightarrow (v). Let f be an α -contraction and $d(f) = d(x_f^*, f(x_f^*))$. If $x_f^* \neq f(x_f^*)$, then we have

$$d(f(x_f^*), f^2(x_f^*)) \le \alpha d(x_f^*, f(x_f^*)) < d(x_f^*, f(x_f^*)).$$

This implies that $F_f = \{x_f^*\}$. Let $x_n \in \mathbb{N}$, be such that $d(x_n, f(x_n)) \to 0$ as $n \to \infty$. We have

$$d(x_n, x_f^*) \le d(x_n, f(x_n)) + d(f(x_n), x_f^*)$$

$$\le d(x_n, f(x_n)) + \alpha d(x_n, x_f^*).$$

Hence,

$$d(x_n, x^*) \le \frac{1}{1 - \alpha} d(x_n, f(x_n)) \to 0 \text{ as } n \to \infty.$$

(v) \Rightarrow (vi). By a theorem of Nadler f contraction implies that \hat{f} is contraction. Let $f \in CT(X, X)$ with $F_f = \{x^*\}$. Then by definition of \hat{f} , $\{x^*\} \in F_{\hat{f}}$. But, \hat{f} contraction implies $F_{\hat{f}} = \{\{x^*\}\}$.

(vi) \Rightarrow (vii). Let $f \in CT(X, X)$. The condition (vi) implies $F_{\widehat{f}} = \{A^*\}$. But $\delta(\widehat{f}(A^*)) = \delta(A^*) \leq \alpha \delta(A^*)$. This implies $A^* = \{a^*\}$. We remark that $A^* \in (UF)_{\widehat{f}} \neq \emptyset$.

(vii) \Rightarrow (viii). Let $f \in CT(X, X)$ and $A^* \in (UF)_{\widehat{f}}$. These imply $A^* = \{a^*\}$. So, $A^* \in (LF)_{\widehat{f}}$.

(ix) \Rightarrow (i). Let $f \in CT(X, X)$, and $x \in X$ such that $f^n(x) \to y^*$. From the continuity of f we have that $y^* \in F_f$. So, $F_f = \{y^*\}$.

Remark 3.1. It is well known that there exist incomplete metric spaces with fixed point property with respect to contraction (see [4], [21]). On the other hand there exists some equivalent statements with completeness ([1], [5], [7]-[9], [12],...). 118

METRIC SPACE WITH FIXED POINT PROPERTY WITH RESPECT TO CONTRACTIONS

Remark 3.2. Condition (ii) implies that each $f \in CT(X, X)$ has the limit shadowing property.

Indeed, let f be an $\alpha\text{-contraction}$ with $F_f=\{x^*\}$ and $x_n\in X,\,n\in\mathbb{N},$ such that

$$d(x_{n+1}, f(x_n)) \to 0 \text{ as } n \to \infty.$$

We have

$$d(x_n, x^*) \le d(x_n, f(x_{n-1})) + d(f(x_{n-1}), x^*)$$

$$\le d(x_n, f(x_{n-1})) + \alpha d(x_{n-1}, x^*) \le \dots$$

$$\le d(x_n, f(x_{n-1})) + \alpha d(x_{n-1}, f(x_{n-2})) + \dots$$

$$+ \alpha^{n-1} d(x_1, f(x_0)) + \alpha^n d(x_0, x^*).$$

From the Cauchy's lemma we have that

$$d(x_n, x^*) \to 0 \text{ as } n \to \infty.$$

So, $d(x_n, f^n(x_0)) \le d(x_n, x^*) + d(x^*, f^n(x_0)) \to 0$ as $n \to \infty$.

Remark 3.3. Let X be a nonempty and $f : X \to X$ an operator. We suppose that there exists $A \in P(X)$ such that

$$A \subset f(A).$$

For the fixed point theory for such operators see J. Andres [2] and the references therein.

The above considerations give rise to

Open problem 3.1. Extend the results of this paper to generalized metric spaces.

Open problem 3.2. Extend the results of this paper to generalized contractions.

Open problem 3.3. Extend the results of this paper to the case of multivalued generalized contractions.

IOAN A. RUS

References

- Amato, P., Un metodo per ridurre questioni di punto fisso a questioni di completamento e viceversa, Boll. UMI, 3-B(1984), 463-476.
- [2] Andres, J., Some standard fixed point theorems revisited, Atti Sem. Mat. Fis. Univ. Modena, 40(2001), 455-471.
- [3] Anisiu, M.C., On maximality principles related to Ekeland's theorem, Seminar on Functional Analysis and Numerical Methods, Preprint Nr.1, 1987, Babeş-Bolyai Univ., 1-8.
- [4] Anisiu, M.C., Anisiu, V., On the closedness of sets with the fixed point property for contractions, Revue d'Anal. Num. et de Théorie de l'Appr., 26(1997), No.1-2, 13-17.
- [5] Brown, A., Pearcy, C., An Introduction to Analysis, Springer, 1995.
- [6] Connel, E.H., Properties of fixed point spaces, Proc. A.M.S., 10(1959), 974-979.
- [7] Dugundji, J., Positive definite functions and coincidences, Fund. Math., 90(1976), 131-142.
- [8] Hu, T.K., On a fixed point theorem for metric space, Amer. Math. Monthly, 74(1967), 436-437.
- Kirk, W.A., Caristi's fixed point theorem and metric convexity, Colloq. Math., 36(1976), no.1, 81-86.
- [10] Kirk, W.A., Sims, B., (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.
- [11] Liu, Z., Order completeness and stationary points, Rostock. Math. Kolloq., 50(1997), 85-88.
- [12] Park, S., Characterization of metric completeness, Colloq. Math., 49(1984), no.1, 21-26.
- [13] Piljugin, S. Ju, Shadowing in Dynamical Systems, Springer, 199.
- [14] Qiu, J.-H., Local completeness, drop theorem and Ekeland's variational principle, J. Math. Anal. Appl., 311(2005), no.1, 23-39.
- [15] Rus, I.A., Weakly Picard operators and applications, Seminar on Fixed Point Theory Cluj-Napoca, 2(2001), 41-58.
- [16] Rus, I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [17] Rus, I.A., Picard operators and well-posedness of fixed point problems (to appear).
- [18] Rus, I.A., Mureşan, S., Miklos, E., Maximal fixed point structures, Studia Univ. Babeş-Bolyai, Math., 48(2003), No.3, 141-145.
- [19] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory 1950-2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002.
- [20] Sine, R.C. (ed.), Fixed Points and Nonexpansive Mappings, Contemporary Math., 18(1983), Amer. Math. Soc.

METRIC SPACE WITH FIXED POINT PROPERTY WITH RESPECT TO CONTRACTIONS

- [21] P.V. Subramanyan, Completeness and fixed points, Monatsch. f
 ür Math., 80(1975), 325-330.
- [22] Tasković, M.R., Axiom of Choice 100th next, Mathematica Moravica, 8(2004), Nr.1, 39-62.
- [23] Turinici, M., Pseudometric versions of the Caristi-Kirk fixed point theorem, Fixed Point Theory, 5(2004), No.1, 147-161.
- [24] Turinici, M., Zhong's variational principles is equivalent with Ekeland's Fixed Point Theory, 6(2005), No.1, 133-138.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, DEPARTMENT OF APPLIED MATHEMATICS, KOGĂLNICEANU 1, CLUJ-NAPOCA, ROMANIA *E-mail address*: iarus@math.ubbcluj.ro