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BILATERAL APPROXIMATIONS OF SOLUTIONS OF EQUATIONS
BY ORDER THREE STEFFENSEN-TYPE METHODS

ION PĂVĂLOIU

Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. The convergence of method of Steffensen-type which is ob-

tained from the Lagrange polynomial of inverse interpolation with con-

trolled nodes - is studied in this paper. Conditions are given sequences

which bilaterally approximates the solution of an equation.

1. Introduction

In order to approximate the solutions of scalar equations it is suitable to use

iteration methods which lead to monotone sequences. Suppose that such a method

generates two such sequences, i.e., an increasing sequence (un)n≥0 and a decreasing

sequence (vn)n≥0. If both converge to the solution x̄ of a given equation, then at each

step one obtains the following error control:

max{x̄− un, vn − x̄} ≤ vn − un

Such methods can be generated, for example, by combining simultaneously

both Newton and chord methods [1], [2], [3], [10].

Conditions for Steffensen and Aitken-Steffensen methods which lead to mono-

tone sequences which bilaterally approximate the root of a given equation, were stud-

ied in [6], [10].
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It is known that both the Steffensen and Aitken-Steffensen methods are ob-

tained from the chord method in which the interpolation nodes are controlled.

In this paper we shall consider a Steffensen-type method, obtained from the

inverse interpolation polynomial of second degree, using three controlled interpolation

nodes.

More exactly, consider the following equation

f(x) = 0, (1)

where f : [a, b] −→ R, a, b ∈ R, a < b.

Denote by F = f([a, b]) the range of f for x ∈ [a, b].

Suppose that f : [a, b] −→ F is a bijection, that is, there exists f−1 : F −→

[a, b]

Let a1, a2, a3 ∈ [a, b], ai 6= aj , for i 6= j, i; j = 1, 3, three distinct interpolation

nodes and let b1 = f(a1), b2 = f(a2), b3 = f(a3). The inverse interpolation Lagrange

polynomial for f−1 on the nodes b1, b2, b3 ∈ F is given by the following relation:

L(b1, b2, b3; f−1 | y) =a1 + [b1, b2; f−1](y − b1) (2)

+ [b1, b2, b3; f−1](y − b1)(y − b2)

with the remainder given by:

f−1(y)− L(b1, b2, b3; f−1 | y) = [y, b1, b2, b3; f−1](y − b1)(y − b2)(y − b3). (3)

It is known that (2) is symmetric with respect to nodes order. Thus, if

(i1, i2, i3) is a permutation of (1, 2, 3), then the following relations are satisfied:

L(b1, b2, b3; f−1 | y) = ai1+[bi1 , bi2 ; f
−1](y−bi1,

)+[bi1,bi2,
bi3 ; f

−1](y−bi1)(y−bi2) (4)

Apart from (2), these relations lead to five more representations for La-

grange’s polynomial.

In order to obtain a Steffensen-type method, and to approximate the solutions

of equations (1), we shall consider one additional equation:

x− g(x) = 0, g : [a, b] −→ [a, b],
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which we shall assume is equivalent with (1).

If equation (1) has one root x̄ ∈ [a, b], then obviously x̄ = f−1(0), and from

(3) one obtains

x̄ = L(b1, b2, b3; f−1 | 0)− [0, b1, b2, b3; f−1]b1b2b3,

and if we neglect the remainder, we obtain:

x̄ ' L(b1, b2, b3; f−1 | 0). (5)

For divided differences of first and second order of f−1, one knows that [5],

[7], [8], [10]:

[b1, b2; f−1] =
1

[a1, a2; f ]
(6)

and

[b1, b2; b3; f−1] = − [a1, a2, a3; f ]
[a1, a2; f ][a1, a3; f ][a2, a3; f ]

. (7)

Relations (2), (5), (6) and (7) lead to the following approximation of x̄:

x̄ ' a1 −
f(a1)

[a1, a2; f ]
− [a1, a2, a3; f ]f(a1)f(a2)

[a1, a2; f ][a2, a3; f ][a1, a3; f ]
(8)

or the equivalent formal representations from (4). Supposing that f has third degree

derivatives at each point from [a, b], then function f−1 has third degree derivatives at

each point of F.

The following relation is satisfied for the third order derivative of f−1 [4],

[10], [11], [12]:

[f−1(y)]′′′ =
3[f ′′(x)]2 − f ′(x)f ′′′(x)

[f ′(x)]5
(9)

where y = f (x) .

Denote xn ∈ [a, b] an approximation to the root x̄ of (1).

We consider the following nodes in (8):

a1 = xn, a2 = g(xn), a3 = g(g(xn)).
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Taking into account all six approximative representations of x̄, obtained

by permutations of set (1, 2, 3) one obtains the following representations for the

Steffensen-type method.

If

D(xn) =
[xn, g(xn), g(g(xn)); f ]

[xn, g(xn); f ][xn, g(g(xn)); f ][g(xn), g(g(xn)); f ]

then the above considerations lead us to the following:

xn+1 = xn −
f(xn)

[xn, g(xn); f ]
−D(xn)f(xn) · f(g(xn)); (10)

xn+1 = xn −
f(xn)

[xn, g(g(xn)); f ]
−D(xn)f(xn) · f(g(g(xn))); (11)

xn+1 = g(xn)− f(g(xn))
[xn, g(xn); f ]

−D(xn)f(xn)f(g(xn)); (12)

xn+1 = g(xn)− f(g(xn))
[g(xn), g(g(xn)); f ]

−D(xn)f(g(xn))f(g(g(xn))); (13)

xn+1 = g(g(xn))− f(g(g(xn)))
[xn, g(g(xn)); f ]

−D(xn)f(xn)f(g(g(xn))); (14)

xn+1 = g(g(xn))− f(g(g(xn)))
[g(xn), g(g(xn)); f ]

−D(xn)f(g(xn))f(g(g(xn))). (15)

From Newton’s identity (3) one obtains the error representation:

x̄− xn+1 = −[0, f(xn), f(g(xn)), f(g(g(xn))); f−1]f(xn)f(g(xn))f(g(g(xn))). (16)

From the mean value formulas for divided differences one obtains for a fixed

x ∈ [a, b] the existence of η ∈ F such that:

[0, f(x), f(g(x)), f(g(g(x))); f−1] =
[f−1(η)]

3!
.

Since η ∈ F and f is a bijection, using (9) there results the existence of

ξ ∈ [a, b] such that

[0, f (x) , f(g(x)), f(g(g(x))); f−1] =
3[f ′′(ξ)]2 − f ′(ξ)f ′′′(ξ)

6[f ′(ξ)]5
.
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Denote

E(x) = 3[f ′′(x)]2 − f ′(x)f ′′′(x) (17)

so that we obtain from (16)

x̄− xn+1 = − E(ξn)
6[f ′(ξn)]5

f(xn)f(g(xn))f(g(g(xn))). (18)

where ξn ∈ [a, b] is assigned to x = xn.The xn+1 term is given by each of the relations

(10)-(15).

2. The convergence of Steffensen-type method

In this section we shall see that conditions for the Steffensen-type method

of third order given by any relations (10)-(15), lead to sequences which bilaterally

approximate the root of (1).

We suppose that g satisfies the following conditions:

a) there exists l ∈ R, 0 < l < 1 such that for all x ∈ [a, b]:

|g(x)− g(x̄)| ≤ l |x− x̄| , (19)

where x̄ is the common root of (1) and x = g(x);

b) the function g is decreasing on [a, b];

c) the equations (1) and x = g(x) ar equivalent.

The following result holds:

Theorem 1. If functions f, g and element x0 ∈ [a, b] satisfy the conditions:

i1. if x0 ∈ [a, b], then g(x0) ∈ [a, b];

ii2. f has third order derivatives on [a, b];

iii3. f ′(x) > 0, f ′′(x) ≥ 0, for all x ∈ [a, b];

iv1. E(x) ≤ 0 for all x ∈ [a, b], where E is given by (17);

v1. function g satisfies a)-c);

vi1. equation (1) has a root x̄ ∈ [a, b].

Then the following properties are true:
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j1. The elements of sequence (xn)n≥0 generated by (10), where x0 satisfies

i1, remain in [a, b] and for each n = 0, 1, . . ., the following relations are

satisfied:

xn ≤ xn+1 ≤ x̄ ≤ g(xn+1) ≤ g(xn) (20)

if f(x0) < 0, or

xn ≥ xn+1 ≥ x̄ ≥ g(xn+1) ≥ g(xn) (21)

if f(x0) > 0.

jj1. lim xn = lim g(xn) = x̄;

jjj1. max{|xn+1 − x̄| , |g(xn)− x̄|} ≤ |xn+1 − g(xn)| , for each n = 0, 1, . . . .

Proof. Let xn ∈ [a, b], n ≥ 0 for which g(xn) ∈ [a, b].

We consider first: f(xn) < 0, that is, xn < x̄. Since g is decreasing and using

g(x̄) = x̄ one obtains:

g(xn) > x̄

and g(g(xn)) < x̄.

Relation (19) implies:

|g(g(xn))− x̄| ≤ l |g(xn)− x̄| ≤ l2 |xn − x̄|

from which one obtains:

a ≤ xn < g(g(xn)) < x̄ < g(xn) ≤ b. (22)

By use of iii1, (22) and (10) one gets

xn+1 ≥ xn. (23)

The assumptions ii1-iv1and from (22) and (18) we get

x̄− xn+1 > 0,

i.e., x̄ > xn+1, that is f(xn+1) < 0.

Using (23) and assumption c) on g one obtains g(xn+1) ≤ g(xn) and

g(xn+1) > g(x̄) = x̄. Hence we have shown (20).
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We consider now the case f(xn) > 0, that is xn > x̄.

Taking in consideration (11) instead of (10) and by use of

g(xn) < x̄

and g(g(xn)) > x̄, one gets:

f(g(xn)) < 0, f(g(g(xn))) > 0.

It is obvious to note relations (21).

Eventually, (20) and (21) show that sequences (xn)n≥0 and (g(xn))n≥0

converge. Denote lim xn = a, then,we obtain lim g(xn) = g(a). Using (10) or (11) as

n → ∞, it results that f(a) = 0 and therefore a = x̄, the unique solution of (1) on

[a, b].

Remark 2. Suppose the assumptions from Theorem 1 are satisfied and excepting iii1,

the following assumption holds.

f ′(x) < 0 and f ′′ (x) < 0 for each x ∈ [a, b] and consider instead of (1) the

following equation:

h(x) = 0, (24)

where h is given by h(x) = −f(x).

Note that Theorem 1 holds for (24).

The proof is obvious, since h′(x) > 0 and h′′(x) > 0, for all x ∈ [a, b] and

E(x) = 3[h′′(x)]2 − h′(x)h′′(x) < 0, that is E remains invariant.

A result similar to Theorem 1 holds, for the case in which f is decreasing and

convex.

Theorem 3. If functions f, g and element x0 ∈ [a, b] satisfy the following conditions:

i2. if x0 ∈ [a, b], then g(x0) ∈ [a, b];

ii2. f has third order derivative on [a, b];

iii2. f ′(x) < 0 and f ′′(x) > 0, for all x ∈ [a, b];

iv2. E(x) ≤ 0, for all x ∈ [a, b];

v2. function g satisfies a)-c);
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vi2. equation (1) has one root x̄ ∈ [a, b].

Then (xn)n≥0 generated by (10) or (11), remains in [a, b], and relation j1−

jjj1 from Theorem 1 are satisfied, when x0 satisfies i2.

Proof. The assumption iii1 leads to D(x) < 0 for all x ∈ [a, b]. Let xn ∈ [a, b], n ≥ 0,

an element for which g(xn) ∈ [a, b].

If xn > x̄, then f(xn) < 0 and g(xn) < x̄, g(g(xn)) > x̄.

From (19) one gets

|g(g(xn))− x̄| ≤ l2 |xn − x̄| ,

that is the following relations hold:

a ≤ g(xn) < x̄ < g(g(xn)) < xn ≤ b.

From iii2, f(x2) < 0 and using D(xn) < 0, (10) one obtains

xn+1 < xn.

The assumptions ii2-iv2 and relations (22), and (18) imply

x̄− xn+1 < 0,

that is, xn+1 > x̄, f(xn+1) < 0. Obviously relations (21) hold.

Relations (20) and consequences jj1 and jjj1 are proven analogously to The-

orem 1.

Remark 4. If f is increasing and concave, that is, f ′(x) > 0 and f ′(x) < 0, then

obviously h = −f is decreasing and convex.

If we replace in Theorem 3: function f by function h, and if we take into

account that function E remains invariant by this replacement, then we note that the

statements of Theorem 3 remain true.
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3. Determination of the auxiliary function

In the following, by use of function f, we give a method to determine auxiliary

function g, which could assure the control of interpolatory nodes.

If f is a convex function, i.e. f ′′(x) > 0, then for function g we consider

g (x) = x− f(x)
f ′ (x)

. (25)

If f is a concave function, then we can set

g (x) = x− f(x)
f ′(b)

. (26)

Obviously in both cases we have g′(x) < 0 and thus function g satisfies

assumption b).

It is clear that function g given by either (25) or (26), assures the equivalence

of (1) and x = g(x), i.e., g satisfies assumption c).

In order that g also satisfies assumption a), it is enough that the following

relations hold: ∣∣∣∣1− f ′(x)
f(a)

∣∣∣∣ < 1,

for all x ∈ [a, b], if f is convex function, or∣∣∣∣1− f ′(x)
f(b)

∣∣∣∣ < 1,

for all x ∈ [a, b], if f is a concave function.
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