STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LI, Number 3, September 2006

HOMOMORPHS WITH RESPECT TO WHICH ANY HALL π -SUBGROUP OF A FINITE π -SOLVABLE GROUP IS A PROJECTOR

RODICA COVACI

Dedicated to Professor Ștefan Cobzaș at his 60^{th} anniversary

Abstract. Let π be a set of primes. The paper studies some special homomorphs of finite π -solvable groups, proving that some of them are Schunck classes. These homomorphs are used to give conditions on an arbitrary homomorph \underline{X} , such that any Hall π -subgroup of a finite π solvable group G to be an \underline{X} -projector of G. Particularly, for π the set of all primes, one obtain the converse of a result given by W. Gaschütz in [8].

1. Preliminaries

In [4] we gave conditions with respect to which any <u>X</u>-projector H of a finite π -solvable group G in a Hall π -subgroup of G, where <u>X</u> is a π -closed Schunck class with the P property. It is the aim of this paper to solve the converse problem: to give conditions on an arbitrary homomorph <u>X</u>, such that any Hall π -subgroup H of a finite π -solvable group G to be an <u>X</u>-projector of G. This problem leads us to the study of some special homomorphs, some of them being Schunck classes.

All groups considered in this paper are finite. Let π be a set of primes, π' the complement to π in the set of all primes and $O_{\pi'}(G)$ the largest normal π' -subgroup of a group G.

We first remind some useful definitions and theorems.

Definition 1.1. ([8], [11]) a) A class \underline{X} of groups is a homomorph if \underline{X} is epimorphically closed, i.e. if $G \in \underline{X}$ and N is a normal subgroup of G, then $G/N \in \underline{X}$.

Received by the editors: 01.10.2005.

 $^{2000\} Mathematics\ Subject\ Classification.\ 20D10.$

Key words and phrases. Homomorph, Schunck class, projector, π -solvable group, Hall π -subgroup.

b) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H of G with $core_G H = \{1\}$, where $core_G H = \cap \{H^g/g \in G\}$.

c) A homomorph \underline{X} is a *Schunck class* if \underline{X} is *primitively closed*, i.e. if any group G, all of whose primitive factor groups are in \underline{X} , is itself in \underline{X} .

Definition 1.2. a) A positive integer n is said to be a π -number if for any prime divisor p of n we have $p \in \pi$.

b) A finite group G is a *p*-group if |G| is a π -number.

Definition 1.3. ([6]) A group G is π -solvable if every chief factor of G is either a solvable π -group or a π' -group. For π the set of all primes, we obtain the notion of solvable group.

Definition 1.4. A class \underline{X} of groups is said to be π -closed if

$$G/O_{\pi'}(G) \in \underline{X} \Rightarrow G \in \underline{X}.$$

A π -closed homomorph, respectively a π -closed Schunck class is called π -homomorph, respectively π -Schunck class.

Definition 1.5. ([7], [8]) Let \underline{X} be a class of groups, G a group and H a subgroup of G.

a) H is an <u>X</u>-maximal subgroup of G if:

i)
$$H \in \underline{X}$$
;

ii) $H \leq H^* \leq G, H^* \in \underline{X}$ imply $H = H^*$.

b) H is an <u>X</u>-projector of G if, for any normal subgroup N of G, HN/N is <u>X</u>-maximal in G/N.

c) H is an <u>X</u>-covering subgroup of G if:

i) $H \in \underline{X};$

ii) $H \leq K \leq G, K_0 \triangleleft K, K/K_0 \in \underline{X}$ imply $K = HK_0$.

Definition 1.6. ([3]) Let \underline{X} be a class of groups. We say that \underline{X} has the *P* property if, for any π -solvable group *G* and for any minimal normal subgroup *M* of *G* such that *M* is a π' -group, we have $G/M \in \underline{X}$.

Theorem 1.7. ([1]) A solvable minimal normal subgroup of a finite group is abelian.

HOMOMORPHS WITH RESPECT TO WHICH ANY HALL $\pi\mbox{-}{\rm SUBGROUP}$ OF A FINITE IS PROJECTOR

Theorem 1.8. ([8]) Let \underline{X} be a class of groups, G a group and H a subgroup of G. H is an \underline{X} -projector of G if and only if:

a) H is an <u>X</u>-maximal subgroup of G;

b) HM/M is an <u>X</u>-projector of G/M, for all minimal normal subgroups M of G.

Theorem 1.9. ([2]) a) Let \underline{X} be a class of groups, G a group and H a subgroup of G. If H is an \underline{X} -covering subgroup of G or H is an \underline{X} -projector of G, then H is \underline{X} -maximal in G.

b) If \underline{X} is a homomorph and G is a group, then a subgroup H of G is an \underline{X} -covering subgroup of G if and only if H is an \underline{X} -projector in any subgroup K of G with $H \subseteq K$.

Theorem 1.10. Let \underline{X} be a homomorph.

a) ([7]) If H is an <u>X</u>-covering subgroup of a group G and N is a normal subgroup of G, then HN/N is an <u>X</u>-covering subgroup of G/N.

b) ([8]) If H is an \underline{X} -projector of a group G and N is a normal subgroup of G, then HN/N is an \underline{X} -projector of G/N.

c) ([7]) If H is an <u>X</u>-covering subgroup of G and $H \le K \le G$, then H is an <u>X</u>-covering subgroup of K.

Theorem 1.11. ([5]) Let \underline{X} be a π -homomorph. The following conditions are equivalent:

(1) \underline{X} is a Schunck class;

(2) any π -solvable group has <u>X</u>-covering subgroups;

(3) any \underline{X} -solvable group has \underline{X} -projectors.

2. Some properties of the Hall π -subgroups in finite π -solvable groups

The Hall subgroups were introduced in [9], where Ph. Hall studied them in finite solvable groups. In [6], S. A. Čunihin extended this study to finite π -solvable groups.

Definition 2.1. Let G be a group and H a subgroup of G.

a) *H* is a π -subgroup of *G* if *H* is a π -group.

b) *H* is a Hall π -subgroup of *G* if:

i) H is a π -subgroup of G;

ii) (|H|, |G:H|) = 1.

We shall use some properties of the Hall π -subgroups, which we give below.

Theorem 2.2. ([10]) Let G be a group and G a Hall π -subgroup of G.

a) If $H \leq K \leq G$, then H is a Hall π -subgroup of K.

b) If N is a normal subgroup of G, then HN/N is a Hall π -subgroup of G/N.

Theorem 2.3. (Ph. Hall, S. A. Čunihin) ([10]) If G is a π -solvable group,

then:

a) G has Hall π -subgroup and G has Hall π' -subgroups;

b) any two Hall π -subgroups of G are conjugate in G; any two Hall π' -subgroups of G are conjugate in G too.

We now prove a consequence of theorems 2.2 and 2.3.

Theorem 2.4. Let G be a π -solvable group. If H is a Hall π -subgroup of G and H^* is a π -subgroup of G such that $H \subseteq H^*$, then $H = H^*$.

Proof. By 2.2.a), H is a Hall π -subgroup of H^* . But H^* being a π -group and $|H^*|$ and $|H^*: H^*| = 1$ being coprime, it follows that H^* is a Hall π -subgroup of H^* . Applying now 2.3.b), we obtain that H and H^* are conjugate in H^* , i.e. there is an element $x \in H^*$ such that $H = (H^*)^x = H^*$. \Box

Finally we give a result proved in [4]:

Theorem 2.5. ([4]) Let G be a π -solvable group, H a subgroup of G and N a normal subgroup of G. If HN/N is a Hall π -subgroup of G/N and H is a Hall π -subgroup of HN, then H is a Hall π -subgroup of G.

3. Some useful homomorphs

Let π be an arbitrary set of primes. Of special interest for our considerations will be the following classes of finite π -solvable groups:

Notations 3.1.

 $\underline{W}_{\pi} = \{G/G \text{ finite } \pi - \text{solvable group}\};$ $\underline{G}_{\pi} = \{G \in \underline{W}_{\pi}/G\pi - \text{group}\};$ $\underline{G}_{\pi'} = \{G/G\pi' - \text{group}\};$ $\underline{K}_{\pi} = \{G \in \underline{W}_{\pi}/O_{\pi'}(G) \neq 1\};$ HOMOMORPHS WITH RESPECT TO WHICH ANY HALL $\pi\text{-}\text{SUBGROUP}$ OF A FINITE IS PROJECTOR

 $\underline{M}_{\pi} = \underline{W}_{\pi} \setminus \underline{K}_{\pi} = \{ G \in \underline{W}_{\pi} / O_{\pi'}(G) = 1 \}.$

Remark 3.2. $\underline{G}_{\pi} \subseteq \underline{M}_{\pi} \subseteq \underline{W}_{\pi}$.

We now give some properties of the above classes.

Theorem 3.3. \underline{W}_{π} is a π -Schunck class.

Proof. \underline{W}_{π} is a homomorph. Indeed, if G is a π -solvable group and N is a normal subgroup of G, then G/N is a π -solvable group.

 \underline{W}_{π} is π -closed, since if $G/O_{\pi'}$ is a π -solvable group, then, observing that $O_{\pi'}(G)$ is π -solvable, we deduce that G is π -solvable.

In order to prove that the π -homomorph \underline{W}_{π} is a Schunck class, it suffices to notice that any π -solvable group G is its own \underline{W}_{π} -covering subgroup. Applying 1.11, we obtain that \underline{W}_{π} is a Schunck class. \Box

Theorem 3.4. \underline{G}_{π} is a homomorph.

Proof. Let $G \in \underline{G}_{\pi}$ and let N be a normal subgroup of G. Then G/N is π -solvable and, |G/N| being a divisor of |G|, G/N is a π -group. So $G/N \in \underline{G}_{\pi}$. \Box

Theorem 3.5. a) \underline{K}_{π} consists of all π -solvable groups G for which there is a minimal normal subgroup M of G, such that M is a π' -group.

b) \underline{K}_{π} is a homomorph.

Proof. a) Let $G \in \underline{K}_{\pi}$. It follows that G is π -solvable and $O_{\pi'}(G) \neq 1$. Hence there is a minimal normal subgroup M of G, such that $M \subseteq O_{\pi'}(G)$. So M is a π' -group.

Conversely, if G is a π -solvable group and there is a minimal normal subgroup M of G, such that M is a π' -group, then $M \subseteq O_{\pi'}(G)$ and so $O_{\pi'}(G) \neq 1$.

b) Let $G \in \underline{K}_{\pi}$ and let L be a normal subgroup of G. Then, G being π solvable, G/L is also π -solvable. Let us prove that $O_{\pi'}(G/L) \neq 1$. Indeed, we notice
that $O_{\pi'}(G)L$ is normal in G and so $O_{\pi'}(G)L/L$ is normal in G/L. But $O_{\pi'}(G)L/L \cong$ $O_{\pi'}(G)/(O_{\pi'}(G) \cap L)$ is a π' -group. It follows that $O_{\pi'}(G)L/L \subseteq O_{\pi'}(G/L)$. From $O_{\pi'}(G) \neq 1$ we deduce that $O_{\pi'}(G)L/L \neq 1$ and so $O_{\pi'}(G/L) \neq 1$. \Box

Theorem 3.6. \underline{M}_{π} consists of all π -solvable groups G for which any minimal normal subgroup M of G is a solvable π -group.

Proof. Let $G \in \underline{M}_{\pi}$. Then G is a π -solvable group and $O_{\pi'}(G) = 1$. Let M be a minimal normal subgroup of G. G being π -solvable, M is either a solvable

 π -group or a π' -group. But π' -group implies $M \subseteq O_{\pi'}(G) = 1$, hence M = 1, which is a contradiction with the fact that M is a minimal normal subgroup of G. It follows that M is a solvable π -group.

Conversely, let G be a π -solvable group, such that any minimal normal subgroup M of G is a solvable π -group. This means that G has not minimal normal subgroups which are π' -groups. We must prove that $O_{\pi'}(G) = 1$. Suppose that $O_{\pi'}(G) \neq 1$. It follows that there is a minimal normal subgroup M of G, such that $M \subseteq O_{\pi'}(G)$. So M is a π' -group, in contradiction with the above. \Box

Theorem 3.7. a) $\underline{G}_{\pi'} \subseteq \underline{W}_{\pi}$;

b) $\underline{G}_{\pi'}$ is a π -Schunck class. Furthermore, for any finite π -solvable group G, H is an $\underline{G}_{\pi'}$ -covering subgroup of G if and only if H is a Hall π' -subgroup of G.

Proof. Let G be a π' -group. Then any chief factor M/N of G is a π' -group. Hence G is π -solvable.

b) We prove that $\underline{G}_{\pi'}$ is a Schunck class using theorem 1.11. In [5], we proved that $\underline{G}_{\pi'}$ is a π -homomorph and that a subgroup H of a π -solvable group G is an $\underline{G}_{\pi'}$ -covering subgroup of G if and only if H is a Hall π' -subgroup of G. So, by 1.11, $\underline{G}_{\pi'}$ is a π -Schunck class.

As a new fact, by using the properties given in 2.2 and 2.5, we give here a new proof of the following result: If G is a π -solvable group and H is an $\underline{G}_{\pi'}$ -covering subgroup of G, then H is a Hall π' -subgroup of G.

Let G be a π -solvable group and H an $\underline{G}_{\pi'}$ -covering subgroup of G. We prove, by induction on |G|, that H is a Hall π' -subgroup of G. Two cases are possible:

1) H = G. Then the result is obvious.

2) $H \neq G$. Let M be a minimal normal subgroup of G. By 1.10.a), HM/M is an $\underline{G}_{\pi'}$ -covering subgroup of G/M, hence, by induction, HM/M is a Hall π' -subgroup of G/M. By 1.10.c), H is an $\underline{G}_{\pi'}$ -covering subgroup of HM. We now consider two cases:

a) $HM \neq G$. By the induction, H is a Hall π' -subgroup of HM. Then, by 2.5, H is a Hall π' -subgroup of HM. Then, by 2.5, H is a Hall π' -subgroup of G.

HOMOMORPHS WITH RESPECT TO WHICH ANY HALL π -SUBGROUP OF A FINITE IS PROJECTOR

b) HM = G. Then HM/M = G/M. But HM/M being a Hall π' -subgroup of G/M, we obtain that G/M is a π' -group. We prove that |G:H| is a π -number. For the minimal normal subgroup M of the π -solvable group G we have two possibilities:

 b_1) M is a solvable π -group. Then $|G:H| = |HM:H| = |M:M \cap H|$ divides |M| and so |G:H| is a π -number.

 b_2) M is a π' -group. Then |G| = |G/M||M| is a π' -number. So $G \in \underline{G}_{\pi'}$. But H being an $\underline{G}_{\pi'}$ -covering subgroup of G, it follows that H is $\underline{G}_{\pi'}$ -maximal in G. Then H = G, in contradiction with our assumption. \Box

The last results of this section refer to the connection of the classes \underline{K}_{π} and \underline{M}_{π} to the π -homomorphs with the P property studied in [3].

Theorem 3.8. If \underline{X} is a π -homomorph with the P property, then $\underline{K}_{\pi} \subseteq \underline{X}$.

Proof. Let $G \in \underline{K}_{\pi}$. By 3.5.a), G is π -solvable and there is a minimal normal subgroup M of G, such that M is a π' -group. Then $M \subseteq O_{\pi'}(G)$, hence

$$G/O_{\pi'}(G) \cong (G/M)(O_{\pi'}(G)/M).$$

$$\tag{1}$$

But \underline{X} has the P property and so $G/M \in \underline{X}$ and \underline{X} being a homomorph we deduce from (1) that $G/O_{\pi'}(G) \in \underline{X}$. By the π -closure of $\underline{X}, G \in \underline{X}$. So $\underline{K}_{\pi} \subseteq \underline{X}$. \Box

Theorem 3.9. If \underline{X} is a π -homomorph, such that $\underline{X} \subseteq \underline{M}_{\pi}$, then \underline{X} has not the P property.

Proof. Suppose that \underline{X} has the *P* property. Then, by 3.8, we have $\underline{K}_{\pi} \subseteq \underline{X}$. But $\underline{X} \subseteq \underline{M}_{\pi}$. We obtain the contradiction $\underline{K}_{\pi} \subseteq \underline{M}_{\pi}$, where $\underline{M}_{\pi} = \underline{W}_{\pi} \setminus \underline{K}_{\pi}$. \Box

4. When are the Hall π -subgroups projectors in finite π -solvable groups

In [4], we gave conditions with respect to which an \underline{X} -projector H of a finite π -solvable G is a Hall π -subgroup of G, where \underline{X} is a π -closed Schunck class with the P property.

Here we study the converse problem: to find conditions on the Schunck class \underline{X} , such that any Hall π -subgroup H of a finite π -solvable group G to be an \underline{X} -projector of G.

The main result is the following:

Theorem 4.1. Let \underline{X} be a homomorph, such that $\underline{G}_{\pi} \subseteq \underline{X} \subset \underline{M}_{\pi}$. If G is a finite π -solvable group and H is a Hall π -subgroup of G, then H is an \underline{X} -projector of G.

Proof. By induction on |G|. Let G be a finite π -solvable group and H a Hall π -subgroup of G (H exists by 2.3.a)). We shall prove that H is an <u>X</u>-projector of G, by verifying conditions (a) and (b) from theorem 1.8.

a) *H* is \underline{X} -maximal in *G*. Indeed, we shall prove below (i) and (ii) from 1.5.a).

i) $H \in \underline{X}$, since H being a Hall π -subgroup of G we have $H \in \underline{G}_{\pi} \subseteq \underline{X}$.

ii) $H \leq H^* \leq G, \ H^* \in \underline{X}$ imply $H = H^*$. In order to show this, we consider two cases:

 α) $H^* \neq G$. In this case, $|H^*| < |G|$ and H being by 2.2.a) a Hall π -subgroup of H^* , we may apply the induction and obtain that H is an <u>X</u>-projector of H^* , hence, by 1.9.a), H is <u>X</u>-maximal in H^* . But $H^* \in \underline{X}$. So $H = H^*$.

 β) $H^* = G$. Then $G \in \underline{X} \subset \underline{M}_{\pi}$. So we distinguish two cases:

 β_1) There is a minimal normal subgroup M of G, such that $M \subseteq H$. By 2.2.b), H/M is a Hall π -subgroup of G/M. We notice that |G/M| < |G|. It follows by the induction that H/M is an \underline{X} -projector of G/M, hence, by 1.9.a), H/M is \underline{X} -maximal in G/M. But, \underline{X} being a homomorph, $G \in \underline{X}$ implies $G/M \in \underline{X}$. So H/M = G/M, hence $H = G = H^*$.

 β_2) For any minimal normal subgroup N of G, we suppose that N is not included in H. Since $G \in \underline{M}_{\pi}$, there is a minimal normal subgroup M of G, such that M is a solvable π -group. Then, by 1.7, M is abelian. We also have that M is not included in H.

By 2.2.b), HM/M is a Hall π -subgroup of G/M. By the induction, HM/M is an \underline{X} -projector of G/M, hence HM/M is \underline{X} -maximal in G/M. But, \underline{X} being a homomorph, $G \in \underline{X}$ implies $G/M \in \underline{X}$. So HM/M = G/M, hence HM = G.

Let us prove that $H \cap M$ is normal in G. Let $g \in G$ and $x \in H \cap M$. Since HM = G, we have that g = hm, where $h \in H$, $m \in M$. Then

$$g^{-1}xg = (hm)^{-1}x(hm) = (m^{-1}h^{-1})x(hm) = m^{-1}(h^{-1}xh)m$$

58

HOMOMORPHS WITH RESPECT TO WHICH ANY HALL $\pi\text{-}\text{SUBGROUP}$ OF A FINITE IS PROJECTOR

$$= m^{-1}m(h^{-1}xh) = h^{-1}xh \in H \cap M,$$

where we applied that $H \cap M$ is normal in H and that M is abelian. So $H \cap M$ is normal in G. Furthermore, since M is not included in H, we have $H \cap M \neq M$ and M being a minimal normal subgroup of G, it follows that $H \cap M = 1$.

Finally we have

$$G/M = HM/M \cong H/M \cap M = H/1 \cong H,$$

which implies that |G/M| = |H| and so G/M is a π -group. But M is a π -group too. So G is a π -group. But H is a Hall π -subgroup of G. Then, by 2.4, $H = G = H^*$. Condition a) is proved.

b) HN/M is an \underline{X} -projector of G/M, for all minimal normal subgroups M of G. Indeed, if M is a minimal normal subgroup of G, then by applying the induction for the π -solvable group G/M, with |G/M| < |G|, and for its Hall π -subgroup HM/M (see 2.2.b)), we obtain that HM/M is an \underline{X} -projector of G/M. \Box

Remark. Particularly, for π the set of all primes, theorem 4.1 represents the converse of a result given by W. Gaschütz in [8].

From the proof of theorem 4.1 we notice that this theorem can also be given in the following form:

Theorem 4.2. Let \underline{X} be a homomorph, such that $\underline{X} \subset \underline{M}_{\pi}$. If G is a finite π -solvable group and H is a Hall π -subgroup of G, such that we have $H \in \underline{X}$, then H is an \underline{X} -projector of G.

Theorem 4.1 has the following important consequence:

Theorem 4.3. Let \underline{X} be a homomorph, such that $\underline{G}_{\pi} \subseteq \underline{X} \subset \underline{M}_{\pi}$. If G is a finite π -solvable group and H is a Hall π -subgroup of G, then H is an \underline{X} -covering subgroup of G.

Proof. We use theorem 1.9.b). Let K be a subgroup of G, such that $H \subseteq K$. We prove that H is an <u>X</u>-projector of K. By 2.2.a), H is a Hall π -subgroup of K. As a subgroup of the π -solvable group G, K is also a π -solvable group. Applying now theorem 4.1, H is an <u>X</u>-projector of K. \Box

References

- Baer, R., Classes of finite groups and their properties, Illinois J. Math., 1, no.2, 1957, 115-187.
- [2] Covaci, R., Projectors and covering subgroups, Studia Univ. Babeş-Bolyai, Math., XXVII, 1982, 33-36.
- [3] Covaci, R., On homomorphs with the P property, Babeş-Bolyai Univ., Cluj-Napoca, Faculty of Mathematics, Research Seminars, Preprint no.1, 1992, 13-16.
- [4] Covaci, R., Projectors and Hall π-subgroups in finite π-solvable groups, Studia Univ. Babeş-Bolyai, Math., L, no.1, 2005, 17-24.
- [5] Covaci, R., Projectors with respect to some special Schunck classes, Studia Univ. Babeş-Bolyai, Math., XLVI, no.3, 2001, 21-32.
- [6] Čunihin, S.A., O teoremah tipa Sylowa, Dokl. Akad. Nauk SSSR, 66, no.2, 1949, 165-168.
- [7] Gaschütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80, no.4, 1963, 300-305.
- [8] Gaschütz, W., Selected topics in the theory of soluble groups, Australian National University, Canberra, 1969.
- [9] Hall, Ph., A note on soluble groups, J. London Math. Soc., 3, 1928, 98-105.
- [10] Huppert, B., Endliche Gruppen I, Berlin-New York, Springer-Verlag, 1967.
- [11] Schunck, H., <u>H</u>-Untergruppen in endlichen auflösbaren Gruppen, Math. Z., 97, no.4, 1967, 326-330.

BABEŞ-BOLYAI UNIVERSITY,

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, STR. KOGĂLNICEANU NR. 1, RO-400084 CLUJ-NAPOCA, ROMANIA *E-mail address:* rcovaci@math.ubbcluj.ro