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CRITERIA FOR UNIT GROUPS
IN COMMUTATIVE GROUP RINGS

PETER DANCHEV

Abstract. Suppose G is an arbitrary abelian group and F is a field of

charF = p 6= 0. In the present paper criteria are found the group of all

units UF [G] in the group ring F [G] and its subgroup V F [G] of normed

units to belong to some central classes of abelian groups under minimal

restrictions on F and G. In many instances these necessary and sufficient

conditions are in a final form and improve or supersede well-known and

documented classical results in this aspect such as due to Karpilovsky

(Arch. Math. Basel, 1983). The criteria obtained by us are a natural

sequel to our recent results published in Glasgow Math. J. (September,

2001) and are generalizations to those stated and argued by us in Math.

Balkanica (June, 2000) as well.

1. Introduction

Throughout the body of the text, let F [G] be the group ring with prime

characteristic p of the abelian group G over the field F of prime characteristic p. As

usual, n ∈ N is a natural number and ζn is a primitive n-th root of unity, that is

ζn
n = 1 while ζk

n 6= 1 ∀ k < n. For an abelian group G, written via the multiplicative

record as is customary when regarding group rings, G∗ is the maximal p-divisible

subgroup of G, G[n] = {g ∈ G|gn = 1} is the n-socle of G and Gt = ∪n<ωG[n] (in

the set-theoretic sense) jointly with Gp are the torsion part and its p-component in

G, respectively. For a field F , F− is the algebraic closure of F , F (ζn) is a cyclotomic

extension of F by inserting ζn, (F (ζn) : F ) is the binomial index of F (ζn) in F, F ∗ is
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the multiplicative group of F and Fd = F pω

is the maximal p-divisible subfield of F .

In what follows, K denotes an algebraically closed field with characteristic p.

All other notions and notations from abelian group rings theory not explicitly

defined herein will follow essentially our recent work [2]. For instance, SF [G] is the

normed Sylow p-subgroup in F [G], |M | is the cardinality of an arbitrary set M ,

mn = |{g ∈ G|order(g) = n}|/(F (ζn) : F ), etc. Apparently mn = 0 ⇔ G[n]\G[k] =

∅ ∀ k < n ⇔ G[n] \ ∪k<nG[k] = ∅, and |mn| = |G[n] \ ∪k<nG[k]| ≥ ℵ0 for some,

hence almost all, n ∈ N whenever |Gt| ≥ ℵ0 since (F (ζn) : F ) < ℵ0 is ever fulfilled.

Concerning various technical terms and the terminology used in the abelian

group theory, they are in agreement with the classical books [10-12]. Nevertheless, for

the sake of completeness and for the convenience of the readers, we include some more

specific details; for example, in all that follows, for any abelian group A, the cardinal

number r0A denotes the torsion-free rank of A, and A1 = ∩nAn = ∩p ∩m Apm

=

∩pA
pω

is the first Ulm subgroup of A. For simplicity of the exposition, we use the

abbreviations Σ-cyclic and Σ-countable for direct sums of cyclic groups, respectively

for direct sums of countable groups, with the exception of the definition of a Σ-group

that is an abelian group whose high subgroups are direct sums of cyclics.

The main goal of this manuscript is to establish as applications to the struc-

tural theorems in [2] necessary and sufficient conditions for the groups UF [G] and

V F [G] of all invertible elements (often called units) and normed invertible elements

(often called normalised units), respectively, to possess some important properties

and to compute explicitly their determinate numerical invariants. The given criteria

and computations expand in some way classical facts in this direction proved in ([3,5];

see [6] too), [13] and [19-22; 23-28].

Conforming with the isomorphic descriptions of UF [G] and V F [G], given in

[2], we have obtained in [4] certain additional algebraic properties for these groups,

which properties are of some importance. Moreover, we indicate also that, a criterion

for V F [G] to be a direct sum of p-mixed countable abelian groups was established in

[9,7], provided F is perfect.
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2. Main results

Some of the main attainments presented here were previously announced in

[1].

And so, we start with

Theorem 1. V F [G] is Σ-cyclic if and only if G is Σ-cyclic and at most one

of the following conditions hold:

1) Gt = Gp

or

2) Gt 6= Gp, F 6= F− and F (ζn)∗ is Σ-cyclic for each n ∈ N0 = N ∪ {0}

which is an order of an element of Gt/Gp.

Proof. Certainly, V F [G] being Σ-cyclic implies by the classical theorem of

L. Kulikov ([10], p.110, Theorem 18.1) that G ⊆ V F [G], being a subgroup, is also

Σ-cyclic.

First of all, suppose F is algebraically closed and V F [G] is Σ-cyclic. Hence

V F [Mt] ⊆ V F [G] is also Σ-cyclic, where M is a group so that G = Gp × M . But

besides V F [Mt] is divisible (see [2], formula (8)), and therefore V F [Mt] = 1, i.e.

Mt = 1. Thus Gt = Gp.

Conversely, take G to be Σ-cyclic and Gt = Gp. Hence G splits and so

G = Gp×M . Owing to Lemma 2.2 of [2], V F [G] = V F [M ]×SG[G] ∼= G/Gt×SF [G]

by using the well-known Higman’s result on trivial units documented in [14]. Finally

V F [G] is Σ-cyclic because G/Gt is free and because Theorem 2.1 from [2] ensures

that SF [G] is Σ-cyclic.

Let now F be not algebraically closed, i.e. F 6= F−. Suppose V F [G] is

Σ-cyclic. Hence 1 6= V F [Mt] is as well, where M is such a group that G = Gp ×M

and Mt 6= 1, whence Gt 6= Gp. Consequently by formulas (3) and (4) of [2], F (ζn)∗

is Σ-cyclic. The reverse inclusion follows applying formulas (17), (18) and Theorem

2.1(ii) in [2]. This ends the proof.

Theorem 2. UF [G] is Σ-cyclic if and only if G is Σ-cyclic and either
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1’) Gt = Gp and F ∗ is Σ-cyclic

or

2’) Gt 6= Gp and F (ζn)∗ is Σ-cyclic for every n that is an order of an element

of Gt/Gp.

Proof. It is analogous to the last theorem, since F is not algebraically closed

provided UF [G] is Σ-cyclic. Indeed, if F = F 0 then F ∗ is divisible Σ-cyclic, i.e.

F ∗ = 1, and thereby F = {0, 1}, a contradiction with the infinite cardinality of F .

Finally, we apply that UF [G] = V F [G]×F ∗ is Σ-cyclic only when so are V F [G] and

F ∗. The proof is completed.

Example. The condition on n that mn 6= 0 (i.e. that there is an element in

G of order n) stated in the previous two theorems is necessary. In fact, inductively,

let Fn be the finite field of order 23n

, and put F = ∪n<ωFn; Fn ⊆ Fn+1 so F is a

countable field of characteristic p = 2. Let G be the direct sum of ℵ0 copies of a cyclic

group of order 7. Thus Gp = 1 and G = Gt 6= 1 with G7 = 1. In order to obtain that

V F [G] is Σ-cyclic, according to Theorems 1 and 2, F (ζn)∗ should be Σ-cyclic only for

n = 7 but not for every n ∈ N0. This is so since F (ζ3)∗ has 3-component isomorphic

to Z(3∞). As for F (ζ3), we observe that (ζ3) is the field of 4-elements, and in the

formula 43n+1 − 1 = (43n − 1)(42·3n

+ 43n

+ 1) the second factor is always divisible by

3.

To justify the example, since F contains a primitive 7-th root of unity, namely

ζ7 ∈ F1 since F ∗
1 is cyclic of power 7, whence F (ζ7) = F , we detect that V F [G] will

be Σ-cyclic if and only if F ∗ is Σ-cyclic. This follows from the formula 23n+1 − 1 =

(23n − 1)(22·3n

+ 23n

+ 1) because any prime dividing the first factor cannot divide

the second one (note that the prime cannot be 3).

We continue in this way with

Theorem 3. UF [G] is bounded if and only if G is bounded and F ∗ is

bounded.

Proof. It is long-known that SF [G] is bounded if and only if Gp is bounded

(see for example [2]). We note that mk = 0 precisely when G is bounded with

exponent exp(G) < k. That the statements G and F ∗ are both bounded, is equivalent
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to G is bounded and, either F (ζn)∗ is bounded for each n dividing |Gt/Gp| < ℵ0, or⋃∞
n=0×mnF (ζn)∗ is bounded when |Gt/Gp| ≥ ℵ0, follows now easily, since F ∗ being

bounded implies that F is a finite algebraic extension of a simple (hence a finite)

field, whence it is finite as well. Appropriate arguments for this are that F (Zn)∗

is bounded ⇔ F ∗ is bounded ∀ n < ω and that
⋃∞

n=0×mnF (ζn)∗ reduces to⋃
n≤exp(G)×mnF (ζn)∗. Therefore we wish only to apply Theorem 2.2 point (e) of [2].

The proof is complete.

Theorem 4. UF [G] is finitely generated if and only if Gp 6= 1, F and G are

finite; or Gp = 1, G and F are finitely generated.

Proof. First assume Gp 6= 1. Let UF [G] be finitely generated. Then it is

elementary that 1 6= SF [G] is finite. But if |F | ≥ ℵ0 or |G| ≥ ℵ0, we derive as in [14]

that |SF [G]| = max(|F |, |G|) ≥ ℵ0, that is false. Thus obviously F and G are both

finite. Conversely, if F and G are finite, then UF [G] is finite, hence finitely generated.

Now let Gp = 1. In that case the proof goes by a standard application of

Theorem 2.2 in [2] in view of the fact that a subgroup of a finitely generated group

has the same property (cf. [10]). The equivalence of the second part half, namely

that Gp = 1, G and F are finitely generated ⇔ Gp = 1 and G along with F (ζn)∗ are

finitely generated for every n dividing |Gt| < ℵ0, holds at once since F ∗ being finitely

generated forces that so do both F (ζn)∗ ∀ n and F = F ∗ ∪ {0}.

The proof is finished in all generality.

Remark. A criterion for UR[G] to be finitely generated was also founded by

Karpilovsky (see [13, Theorem 3]) when R is a finitely generated commutative unitary

ring of arbitrary characteristic and G is an arbitrary abelian group. However, in our

situation, F need not be finitely generated a priory, as this fact follows easily from

the same property for UF [G].

Generally, does it follow that UR[G] being finitely generated forces the same

property for R? If yes, the problem of finding the criterion for UR[G] to be finitely

generated will be completely resolved. However, this question is quite difficult and

its solution seems to be in the distant future.
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In the next statement, we will use the simple but useful fact that G being

Σ-countable yields that both Gt and Gp are Σ-countable groups as well.

Proposition 5. Let G be splitting and F perfect. If G and F (ζn, µq)∗ are

Σ-countable groups then the group UF [G] is Σ-countable when |Gt/Gp| ≥ ℵ0 and

if G and F (ζn)∗ are Σ-countable groups then the group UF [G] is Σ-countable when

|Gt/Gp| < ℵ0.

Proof. This follows by a standard application of (19), (20) and of Claim 2.1,

all from [2]. The proposition is verified.

Remark. By the same statements, as in the situation for Σ-cyclic groups, cri-

teria can be established for V F [G] to be bounded, finitely generated and Σ-countable.

Nevertheless, we omit the reproduction of their explicit form.

The following two group-theoretic observations are well-known and have rou-

tine proofs - they shall be used below without further reference: an isotype subgroup

of a direct product of a divisible and a bounded group inherits this group property;

a pure subgroup of a divisible group is divisible. Moreover, it is not difficult to check

that an outer direct sum of equal algebraically compact groups is also an algebraically

compact group.

After this, we need one more technicality, which is crucial.

Lemma 6. Suppose Gt = Gp. Then G is pure in V F [G].

Proof. We shall use the definition for the property ”purity” by differing two

basic cases:

Case 1. For each natural n so that p|/n we write n = pt1
1 . . . pts

s as the

canonical form of n, where p1, . . . , ps 6= p are distinct primes, s ∈ N, t1, . . . , ts ∈ N0.

Since V F [G] = GSF [G] (see e.g. [21, 22] or [8]), by the usage of the modular law we

conclude that G ∩ V nF [G] = G ∩ (GSF [G])n = G ∩ (GnSF [G]) = Gn(G ∩ SF [G]) =

GnGp = Gn.

Case 2. p/n, whence we write n = pk1qk2
2 . . . qkm

m to be the canonical form of

n, where q2, . . . , qm 6= p are different primes, m ∈ N, k1, . . . , km ∈ N0. As above we de-

duce G∩V nF [G] = G∩(GSF [G])n = G∩(GnSF pk1 [Gpk1 ]) = Gn(G∩SF pk1 [Gpk1 ]) =

GnGpk1

p = Gn. The proof is over.
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Remark. When G is not p-mixed, that is Gt 6= Gp, G need not be a pure

subgroup of V F [G] in general (see the Remark after Corollary 9). Even more Gt is not

pure in VtF [G] = SF [G]V F [Gt] assuming extra that Gp 6= 1. Another argumentation

is when Gp = 1. Henceforth, in this situation, VtF [G] = V F [Gt] and thus VtK[G],

by point (a’) proved below, must be always divisible whereas Gt may not be so.

Now we are ready to attack the following.

Theorem 7. Let 1 6= Gt be p-torsion. Then

(a) V F [G] is divisible if and only if G is divisible and F is perfect.

(b) V F [G] is a direct sum of a divisible group and of a bounded group if and

only if G is a direct sum of a divisible group and of a bounded group and, either Gt

is not reduced, G/Gt is p-divisible and F is perfect, or Gt is reduced.

(c) V F [G] is algebraically compact if and only if G is algebraically compact

and, either Gt is unbounded algebraically compact, G/Gt is p-divisible and FF is

perfect, or Gt is bounded.

(d) V F [G] is coperiodical if and only if G is coperiodical and, either Gt is

unbounded coperiodical, G/Gt is p-divisible and F is perfect, or Gt is bounded.

Proof. (a) Choose V F [G] to be divisible. Hence Gt = Gp is divisible as

it is a pure subgroup. Thus G = Gt × M and by formula (6) of [2], V F [G] =

V F [M ] × SF [G] ∼= G/Gt × SF [G] using again the classical Higman’s result on the

trivial units (cf. [14]). Further G/Gt is divisible, i.e. so is G, and moreover SF [G]

is also divisible. So, SpF [G] = SF p[Gp] = SF [G], equivalently F = F p, and F is

perfect as asserted.

Conversely, assume G divisible and F perfect. Hence Gp is divisible as it

is pure in G, and besides G/Gt is also divisible as it is a factor-group. Thus G ∼=

Gt ×G/Gt and similarly to the above, V F [G] ∼= G/Gt × SF [G]. Finally, SF [G] and

V F [G] are both divisible groups.

(b) Suppose V F [G] is a direct sum of a divisible group and of a bounded

group. Hence Gp as an isotype subgroup is one also. Therefore G = Gp × M (see

[10]) and as above V F [G] ∼= G/Gt ×SF [G]. Thus G/Gt is a direct sum of a divisible

and a bounded group, i.e. the same is G. On the other hand SF [G] belongs to this
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group class, i.e. it is algebraically compact (cf. [10]). But SF [G] ∼= SF [M ][Gp] (see

[0]) because Mp = 1, and thus SF [M ] = 1. That is why, following [0], if Gp is not

reduced, then SF [G] algebraically compact yields FM is perfect since FM is without

nilpotent elements (notice that F has a trivial nil-radical and M has no p-elements).

Hence, F is perfect and G/Gp is p-divisible.

Oppositely, if the conditions from the text hold, then Gp is algebraically

compact as an isotype subgroup in G. So, G = Gp × M (cf. [10]) and by equality

(6) from [2], V F [G] ∼= G/Gt × SF [G] ∼= G/GtθSF [M ][Gp] (see [0]). We only need to

apply [0] and the result follows immediately.

(c) If G is p-primary, the point follows directly from [0]. So, we may presume

that G 6= Gp. Referring to Lemma 6 and ([10], p.190, Exercise 3), V F [G]/G ∼=

SF [G]/Gp is algebraically compact provided that so is V F [G]. Therefore SF [G]/Gp

is a direct sum of a divisible and a bounded group (cf. [10]). But (SF [G]/Gp)d =

(SFd[G∗])Gp/Gp via [8], hence the quotient-group SF [G]/SFd[G∗]Gp is bounded, i.e.

there is k ∈ N such that SF pk

[Gpk

] ⊆ SFd[G∗]Gp. The last reduces to F pk

= Fd and

Gpk

= G∗ when Gp is not reduced. Indeed, consider the element 1+ rg(1− gp) where

r ∈ F pk

, g ∈ Gpk \Gpk

p and gp ∈ Gpk

p \{1}. Thus 1+rg(1−gp) = (f1a1 + · · ·+ftat)cp,

where fi ∈ Fd, ai ∈ G∗, cp ∈ Gp; 1 ≤ i ≤ t ∈ N. Henceforth, the canonical forms

imply that r ∈ Fd and g ∈ G∗, gp ∈ (G∗)p. Furthermore (Gpk

)p = (G∗)p, i.e.

Gpk

p is divisible, which is equivalent to Gp being algebraically compact by [10]. But

Gpk

/Gpk

p
∼= (G/Gp)pk

is p-divisible, i.e. so is G/Gp. Finally, it is a plain exercise to

verify that Gpk

is p-divisible, i.e. Gpk

= G∗. On the other hand, as we have already

seen, F pk

= F pk+1
whence F is perfect. Next, if Gp is reduced, we have (G∗)p = 1

hence SFd[G∗] = 1 and so the foregoing inclusion takes the form SF pk

[Gpk

] ⊆ Gp or

equivalently Gpk+1

p = 1. So, in both cases, Gp, being a pure subgroup, is a direct factor

of SF [G], hence G is a direct factor of V F [G] = GSF [G]. Then G is algebraically

compact exploiting [10]. This verifies the first half.

For the converse implication, we observe that Gp is a direct factor of G, i.e.

in other words G is p-splitting, whence G/Gt is algebraically compact. Thus by what
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we have shown above, V F [G] ∼= G/Gt×SF [G] ∼= G/Gt×SF [G/Gp][Gp]. By making

use of [0] and [10], the point is exhausted.

(d) Since V F [G] is coperiodical, we refer to [10] to infer that V F [G]/G ∼=

SF [G]/Gp is coperiodical too. Therefore, again by using of [10], the proof goes on

the same arguments and conclusions as in (c).

This proves the theorem.

After this, we proceed by proving the following.

Theorem 8.

(a’) V K[G] is divisible if and only if G/Gt and Gp are divisible.

(b’) V K[G] is a direct sum of a divisible and a bounded group if and only

if G/Gt and Gp are a direct sum of a divisible and a bounded group, and G/Gp is

p-divisible provided Gp is not reduced.

(c’) V K[G] is reduced algebraically compact if and only if G/Gt and Gp are

reduced algebraically compact.

(d’) V K[G] is reduced coperiodical if and only if G/Gt and Gp are reduced

coperiodical.

(e’) Let G be p-splitting. V K[G] is Σ-countable if and only if G/Gt and Gp

are Σ-countable.

Proof. (a’) V K[G] divisible insures that Gp is divisible as its pure subgroup,

whence G is p-splitting. Further the proof follows immediately from the description

of V K[G] in ([2], section 2, formulas (11)-(12)) and from the group-theoretic facts

given in [10]. The reverse implication is similar.

(b’) We firstly deal with the necessity. Certainly, the fact that Gp is isotype

in V K[G] yields that Gp is a direct sum of a divisible and a bounded group, so G

is p-splitting. Further, the proof follows directly by virtue of formulae (11)-(12) in

[2] and utilizing the criterion in [0] for SK[G] to be algebraically compact combined

with some group-theoretic facts obtained in [10]. The sufficiency is analogical.

(c’) Foremost, assume that V K[G] is reduced algebraically compact. Ev-

idently Gp is reduced being a subgroup. Assume also that B is an unbounded

basic subgroup of Gp. Therefore we write B =
⋃∞

n=1 Bn, where all subgroups
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Bn are homogeneous of order pn. We now construct the infinite sequence gn =∏n
i=1(1+bpi−1

i −bi+1p
i), where bi ∈ Bi; n ∈ N. Clearly gp

n = 1, and for each k ∈ N we

have gn+lg
−1
n =

∏n+l
i=n+1(1+bpi−1

i −bi+1p
i) ∈ Spk

K[G] ⊆ SkK[G] ⊆ V kK[G] for every

n ≥ k and arbitrary positive integer L. We note that the first inclusion holds since

if p|/k we have SkK[G] = SK[G], while if p/k we have k = psm for some s,m ∈ N

with (m, p) = 1 and so SkK[G] = Sps

K[G] ⊇ Spk

K[G] by observing that s < k.

That is why (gn) is a Cauchy sequence in V K[G] and consequently we can apply the

well-known Kaplansky theorem ([10], p.191, Theorem 39.1) which guarantees that

(gn) must be convergent to an element of V K[G] in its Z-adic topology. And so, let

g =
∑t

j=1 αjgj ∈ V K[G] be the boundary of (gn). Furthermore, for all k ≥ 1 and

n ≥ k, we derive

t∑
j=1

αjgj =

[
n∏

i=1

(1 + bpi−1

i − bpi

i+1)

]
(r1n(k)a1n(k)pk + · · ·+ rsnn(k)asnn(k)pk),

where r1n(k), . . . , rsnn(k) ∈ K; a1n(k), . . . , asnn(k) ∈ G; sn ∈ N. It is easily seen that

the left hand-side of the last equality is constant about n, while the right hand-side

depends on n and contains a number of elements in the canonical form that is ≥ n > t.

In fact, it is easy to see that there is k ∈ N so that all products of bip
i−1’s for different

various indices i running N are not in Gk
p. If the reverse holds, these products belong

to B∩Gpω

= 1, which is demonstrably false because in that case bpi−1

i = 1 ∀ 1 ≤ i ≤ n

whereas order(bi) = pi. Moreover, because of the direct decomposition of B, these

products of bpi−1

i ’s are independent and their number depend on n. By taking n > t,

the claim really sustained. Finally, we deduce that (gn) is not a convergent, i.e. it is a

divergent, sequence in V K[G] when B is unbounded. Thereby B is bounded, i.e. Gp

must be so by referring to ([10, 12]). Henceforth, appealing to [10], G is p-splitting and

the proof follows by means of formulas (11)-(12) from [2] and the simple observations

stated before Lemma 6. The treatment of the converse question is similar.

(d’) V K[G] being coperiodical implies that V K[G]/V 1K[G] is algebraically

compact (see e.g. [10]), where V 1K[G] is the first Ulm subgroup of V K[G]. Now

we consider the sequence (hn) = (gnV 1K[G]) where (gn) is constructed as in the
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previous point. Clearly gn 6∈ V 1K[G], otherwise gn ∈ V pω

K[G] = V K[Gpω

] and so

bpi−1

i ∈ B ∩ Gpω

= Bpω

= 1, a contradiction. Besides, it is a routine technical work

to check that (hn) is a Cauchy sequence since (gn) is. Further the proof goes by the

same arguments as in the preceding statement. The sufficiency is analogous.

(e’) Since a direct factor of a Σ-countable group is Σ-countable (see [10], a

theorem of Kaplansky - C. Walker) and any divisible group is Σ-countable, then owing

to the isomorphism (11) from [2], it is enough to show only that SK[G] is Σ-countable

if and only if Gp is Σ-countable. In fact, this is precisely Claim 2.1 of [2] and thus we

are done. This deduces the theorem.

Corollary 9. Let G be divisible. Then G is a direct factor of V K[G] with

divisible complementary factor. Thus V K[G] is divisible.

Remark. We can restate point (a’) like this: V K[G] is divisible if and only if

G/Gt is divisible and G is p-divisible. From this, it follows that if V K[G] is divisible,

G need not be so. Consequently, a principal question is whether or not the divisibility

of V F [G] does imply that G is splitting. If yes, one can employ formulas (16) (and

eventually (19) and (20)) from [2] to find a criterion for V F [G] to be divisible.

If X is an arbitrary abelian group, as emphasized in the introduction, we

shall say that r0(X) is the torsion-free rank of X. Mollov [24,25] has calculated the

torsion-free rank of UE[G] for semisimple EG whose G is torsion (see also [14]). Later

on, Mollov and Nachev [26,27] have computed the torsion-free rank r0UEt[G] of the

group of units in a commutative semisimple twisted group algebra Et[G] in terms

of E and of G, when G is torsion or torsion-free. Specifically, they calculated in a

more general aspect this rank for semisimple abelian Et[G] when G is arbitrary, but

in terms of E,G and Et[Gt]. So, the result is incomplete, since a characterization of

Et[Gt] that depends only of E,Gt and the system of factors of Et[G] was not given

here.

Nevertheless, contrasting with their result, we compute r0UE[G] for a mod-

ular or a semisimple group ring E[G] over a splitting or a torsion group G as well as

over a p-splitting group G but over an algebraically closed field E, both in the two

cases only in terms of E and G. That is, of course, more precise.
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Before doing this, we require one more result.

Theorem 10. The group V F [G] is torsion if and only if G is p-torsion, or

G and F ∗ are torsion provided G 6= Gp.

Proof. If G = Gp, it is a simple matter to check that V F [G] is a p-group.

That is why we deal only with G 6= Gp. First assume V F [G] is torsion. Hence G is

torsion and so G = Gp×M . Thus V F [M ] is torsion, and consequently by [25] or [14]

we conclude that F is an algebraic extension of a finite field, i.e. F ∗ is torsion.

To treat the converse, write G = Gp × M . Therefore, in accordance with

Lemma 2.2 of [2], we obtain V F [G] = V F [M ] × SF [G]. But M and F ∗ are both

torsion. By virtue of ([25], [14]), V F [M ] is torsion, i.e. so does V F [G]. This finishes

the proof.

Our aims here are the following.

Theorem 11. Let G be torsion. Then r0V F [G] = 0 if F is an algebraic

extension of a finite field or if G = Gp, and r0V F [G] = max(|F |, |G/Gp|) otherwise.

Proof. First take G to be p-primary or F to be an algebraic extension

of a finite field. Consequently Theorem 10 assures that V F [G] is torsion, and so

r0V F [G] = 0. In the remaining cases we write G ∼= Gp × G/Gp. Therefore formula

(6) in [2] implies V F [G] ∼= V F [G/Gp]×SF [G]. Hence, r0V F [G] = r0V F [G/Gp] (see

[10]), whence we use [24,25] to conclude that r0V F [G] = max(|F |, |G/Gp|), as stated.

The theorem is proved.

Theorem 12. Suppose G splits and E is a field. Then if char(E) = 0,

(1) r0UE[G] = max(|E|, |Gt|, r0(G));

and if char(E) = p 6= 0;

(2) r0UE[G] =

 |Gt/Gp|r0(G), |Gt/Gp| ≥ ℵ0∑
d/|Gt/Gp| mdr0(G), |Gt/Gp| < ℵ0

provided E is an algebraic extension of a finite field, or

(3) r0UE[G] = max(|E|, |Gt/Gp|, r0(G))

otherwise.
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Proof. Given char(E) = 0. In virtue of the isomorphism (15) from [2] to-

gether with [10], we have r0UE[G] = r0UE[Gt]+Σαr0(G/Gt), where α is computed as

in [2]. But r0(G/Gt) = r0(G) and thus [24,25] lead us to r0UE[Gt] = max(|E|, |Gt|),

because E is infinite. Consequently by virtue of ([15], p.206, Theorem 7), r0UE[G] =

max(|E|, Gt|)+(αr0(G) = max(|E|, |Gt|)+max(|Gt|, r0(G)) = max(|E|, |Gt|, r0(G)).

For char(E) = p > 0 and E an algebraic extension of a simple (i.e. of a

finite) field we derive via [14] that UE[Gt/Gp] is torsion. In view of formula (16) in

[2] and of ([15], p.206, Theorem 7) combined with [10], we deduce that r0UE[G] =∑
(|Gt/Gp|r0(G) = |Gt/Gp|r0(G) for the infinite situation or r0UE[G] =

∑
β r0(G) =

βr0(G) where β =
∑

d/|Gt/Gp|md for the finite one.

In the remaining case, the same formula (16) plus [10], [15] and The-

orem 11 are guarantors that r0UE[G] = max(|E|, |Gt/Gp|) +
∑

|Gt/Gp| r0(G) =

max(|E|, |Gt/Gp|) + |Gt/Gp|r0(G) = max(|E|, |Gt/Gp|, r0(G)), as desired. So, the

theorem is true.

Theorem 13. Let E be a field. Then if char(E) = 0,

(4) r0UE−[G] = max(|E−|, |Gt|, r0(G));

and if char(E) = p > 0 and G is p-splitting,

(5) r0UE−[G] = |Gt/Gp|r0(G)

provided E is an algebraic extension of a finite field, or

(6) r0UE−[G] = max(|E−|, |Gt/Gp|, r0(G))

otherwise.

Proof. The result follows employing formulas (8)-(12) from [2] along with

[10] and [15]. The conclusions are similar to these of the foregoing theorem. The

proof is finished.

Now, we shall begin with other types of results by arguing the following (a

part of the results presented here generalize those obtained by Mollov in [24] and [25];

see [14] and [19] as well).
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Proposition 14. Suppose G is a direct sum of finite cyclic groups. Then

V F [G] is nontrivial free modulo torsion if and only if F (ζn)∗ is free modulo torsion

for each n which is an order of an element of G.

Proof. Clearly G is torsion and G = Gp ×M for some group M . Referring

to ratio (6) from [2], we may write V F [G] = V F [M ]×SF [G]. Thus V F [G]/VtF [G] ∼=

V F [M ]/VtF [M ] and the result follows by application of [25] or [14]. The statement

is shown.

We can extend the last affirmation to the next claim.

Proposition 15. Let G be Σ-cyclic. Then UF [G] is nontrivial free modulo

torsion if and only if F (ζn)∗ is free modulo torsion for every n which is an order of

one element of G.

Proof. It is not difficult to see by application of formulae (17-18) from [2]

that UF [G]/UtF [G] ∼= (×δG/Gt) × (Πn ×mn F (ζn)∗/F (ζn)∗t ), where δ is finite or

infinite defined in the same manner as in [2]. This proves the result.

Proposition 16. Suppose G p-splits. Then UK[G] is nontrivial free modulo

torsion if and only if G is free modulo torsion and K is an algebraic extension of a

finite field.

Proof. The isomorphism (11) of [2] obviously yields that UK[G]/UtK[G] ∼=

(×|Gt/Gp|G/Gt) × (×|Gt/Gp|K
∗/K∗

t ). Thus UK[G] is free modulo torsion precisely

when G/Gt is free and K∗/K∗
t = 1 since the latter quotient is divisible. Finally, K∗

is torsion, as desired. The affirmation is established.

Proposition 17. Let G be torsion. If F (ζn)∗ is divisible modulo torsion for

each n which is an order of an element of G, then V F [G] is divisible modulo torsion.

Proof. Write G = Gp × M . As we have seen, V F [G] = V F [M ] × SF [G].

Hence V F [G]/VtF [G] ∼= V F [M ]/VtF [M ]. Finally either [25] or [14] gives the claim,

thus completing the proof.

Proposition 18. Let G be Σ-cyclic. Then UF [G] is nontrivial divisible

modulo torsion if and only if G is torsion and F (ζn)∗ is divisible modulo torsion for

every n which is an order of an element of G.
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Proof. By what we have already shown above, UF [G]/UtF [G] is divisible

only when G/Gt is divisible free and F (ζn)∗/F (ζn)∗t is divisible. Finally G = Gt and

F (ζn)∗ is divisible modulo torsion, as promised, thus finishing the proof.

Proposition 19. Let G be p-splitting. The group UK[G] is divisible modulo

torsion if and only if the group G is divisible modulo torsion.

Proof. By what we have just given above, UK[G]/UtK[G] is divisible only if

the same is valid for G/Gt, because K∗ is divisible whence divisible modulo torsion.

Thus G is really divisible modulo torsion, as expected. The proof is complete.

The following is our crucial tool for the further investigation (see, for instance,

cf. [24] and [25]).

Definition 20. We recall that the field F belongs to the class P if F (ζn)∗

splits for every primitive n-th root of unity ζn in F−. Denote by PI and PR the

subclasses of P which contain fields F with the following two corresponding proper-

ties: the torsion-free factor of F (ζn)∗, that is, the quotient F (ζn)∗/F (ζn)∗t , is free or

divisible for each ζn.

An example for a field that belongs to PI is the following (e. g. see May

[16] or [17,18]): If L is a field such that the multiplicative group E∗ of every finite

extension E of L is free modulo torsion, then all extensions F of L generated by the

algebraic elements of a bounded degree over L belong to the class PI. Besides, if

K is algebraically closed but K is not an absolute algebraic field (K∗ 6= K∗
t ), then

K ∈ PR ([11], p.298, Theorem 77.1 or [12]).

Proposition 21. Suppose G is a torsion direct sum of cyclic groups such

that G 6= Gp and E is a neat transcedental extension of the field F . Then if F ∈ P,

the group V E[G] splits; and if F ∈ PI, the group V E[G] is splitting of torsion-free

rank max(|E|, |G/Gp|).

Proof. Write G = Gp × M , therefore V E[G] = V E[M ] × SE[G]. Hence,

V E[G] splits if and only if the same holds for V E[M ]. So, we need only subsequently

apply ([25], [14]) and Theorem 11. The proof is completed.
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Proposition 22. Suppose G is Σ-cyclic. Then if F (ζn)∗ splits for each n

which is an order of an element of G (in particular if F ∈ P), the group UF [G] is

splitting.

Proof. It follows obviously from dependencies (17) and (18) of [2] that

UtF [G] is a direct factor of UF [G], as claimed. This concludes the proof.

Proposition 23. If G splits and, either F is an algebraic extension of a

finite field (i.e. it is an absolute algebraic field), or Gt/Gp is Σ-cyclic and F ∈ P,

then UF [G] splits.

Proof. Consulting with formula (16) of [2], we argue UF [G] ∼= UF [Gt/Gp]×

(×δG/Gt)×SF [G], where δ is finite when |Gt/Gp| is finite or is infinite when |Gt/Gp|

is infinite. If now F is an absolute algebraic field, then UF [Gt/Gp] is torsion. Thus,

in this case, UF [G] splits. In the remaining one, when Gt/Gp is Σ-cyclic and F ∈ P,

according to Proposition 22 we conclude that UF [Gt/Gp] splits, therefore UF [G]

splits as well, as wanted. This is the end of the proof.

Corollary 24. If G is Σ-cyclic and F ∈ PI, then UF [G] is splitting.

We close the study with the following.

Proposition 25. Assume G is p-splitting. Then UK[G] splits.

Proof. The group K∗ is divisible, hence splitting. Therefore, the statement

holds by application of formula (11) from [2]. The proof is deduced.

Remarks. The conditions G 6= Gp in Theorems 10, 11 plus the restrictions

mn 6= 0 in Theorems 1 and 2 were omitted from [1] involuntarily. Their formulations

in [1] are in an equivalent record.

Moreover, the condition Gpω

q
∼= 1 in Theorem 2.2 (f) on p.370 of [2] must be

written and read as Gqω

q 6= 1. The sentence on p.371-line 2(+) of [2], namely: ”... E

is an algebraic extension of finite field ...” must be assumed as ”... E− is an algebraic

extension of a finite field ...”, and on line 12(-) of the same page the reference ”[36]”

must be ”[37]”, although both the corrections are clear from the context.

58



CRITERIA FOR UNIT GROUPS IN COMMUTATIVE GROUP RINGS

Besides, the equality A =
⋃

α<λ Bα on p. 223 of [3] should be replaced by

A =
⋃

α<λ Gα. In that aspect, the letter
⋃

α<λ

⋃
µ<α Gµ on p. 224 of [3] must be

replaced by
∏

α<λ

⋃
µ<α Gµ.

Also the identity G =
⋃

β<τ Cβ from [7, p. 258] would be interpreted as

G =
⋃

β<τ Gβ .

We terminate this article with problems of some interest and importance,

which immediately arise, namely:

3. Open questions and conjectures

What are the general criteria for UF [G] to be divisible or algebraically com-

pact or coperiodical or Σ-countable or Warfield or simply presented or a Σ-group?

The finding of such necessary and sufficient conditions for the classes of all quoted

groups will definitely be of some significance. In the present research exploration we

have partially settled some of these problems.

On the other hand, the calculation of the torsion-free rank of UF [G] when F

is not algebraic closed and G is absolute arbitrary is requisite for the description of

the torsion-free part in UF [G], and thus for the isomorphism structure of this group.

In this work we have established only a partial answer.

A final question is does UF [G] being splitting imply that the same holds for

G, i.e., in other words, if UF [G] is splitting is then G splitting? It seems to the author

that this is not the case and even more that G is not p-splitting.
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