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ON THE ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS
OF A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

ERCAN TUNC

Abstract. The main purpose of this paper is to establish sufficient con-
ditions under which any solution of (1.1) is uniformly bounded and tend

to zero as t — oo.

1. Introduction and Statement of the Result

As we know from the relevant literature, up to now, many results have been
obtained on the asymptotic behaviour of solutions of certain non-linear differential
equations of the fourth- order (see, e.g., Hara [2-4], Abou-el-Ela, A.M.A and Sadek,
A1 [1], Sadek and Elaiw [7] and Tung, C. and Tung, E. [5], Tung [9-10].

In this paper we investigate the asymptotic behaviour of solutions of the real

non-linear ordinary differential equation of fourth order:

(1.1)

in which the functions a,b,c,d, f1, f2, f3, f1, and p are continuous for all values of
their respective arguments. We assume that the functions a, b, ¢, d are positive definite
and differentiable in Rt = [0,00), and that the derivatives %fg(x,y, z), a%fg(x, Y),
a%fg(x,y), 2 fa(z,y,2) and f;(x) exist and are continuous for all x,y, z and w. The
dots indicate differentiation with respect to t.
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The main purpose of this work is to prove the following

Theorem. In addition to the basic assumptions on the functions a,b,c,d,
f17 f27 f37 f4a and b, suppose that

(i) A>a(t) > ap > 0,B >b(t) > by > 0,C > c(t) > co > 0,D > d(t) > do >
0 for t € RT;

(i) 0 < [W - 041} < min {%\/(5 — £0)coazEapQy, 3—‘/51 / C‘ZO(; }
for all z,y,z,w; a1 >0, az >0, ag >0, ay > 0;

(iii) f3(x,0) =0 and %fg(x,y) > a3 >0 for all z and y;

(iv) There is a finite constant dg > 0 such that
2 0 27,2
aobocoa1a2a3 -C Q3 87yf3(x’y) —A Da1a4 Z (50

for all xz,y and z;

(V)O§a%fg(gc,y)—mgél<213570‘);4forallgccmdy;zéo7

2
Y Capayciag

(vi) yza%f2(a:,y,z) <0 for all z,y and z
(vii) fo(,5,0) = 0, 2 fo(ar,y,2) <0 and 0 < L2222 _q, < 200 (5 £ 0),

where €y is a positive constant such that

gg < €= min{ 1 Doy % Ceoas ( 2Ddocry — 61>} (1.2)

aopoy ’ 60043’ 40,0000[1&3A0’ 4DC¥4A() Caoalcgag

with Ag = aobocgalaz + aobgtg)zjas;

Y
(vil) L [ 2 f3(x,)d¢ < ©22E=20) for all @ and y # 0, and {2 fa(z,y)}” <
0

% for all x and y;

x

(i) £3(0) = 0, fs(@)sgn > 0 (z # 0), Fyfa) = [ £1(Q)dC — o0 as |a] — o
and

0< ay— fi(z) < 200 for all a;

(x) }o%(t)dt < o0,d'(t) — 0 as t — oo, where y(t) := |a'(t)] + U, (t) +
@)+ @),

() = max {b/(t), 0}

(xi) [p(t, 2,5, 2, w)| < pr(t)+pa(t)[Fa(x)+y* +22+ w2+ A(y? +22 +w?) /2,
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

where 6 and A are constants such that 0 < 6 < 1,A >0 and p;(t),p2(t) are nonneg-

ative continuous functions satisfying

o

/pi(t)dt <o (i=1,2). (1.3)

0
If A is sufficiently small, then every solution xz(t) of (1.1) is uniformly bounded and

satisfies

z(t) = 0,z (t) = 0,z (t) — 0,z (t) — 0, ast— oo. (1.4)

Remark. Our result includes those of Abou-el-Ela and Sadek [1], Sadek and
AL-FElaiw [7].

2. The function Vj(t,z,y, z, w)

In what follows it will be convenient to use the equivalent differential system

=y, Y=z, 2= w,

w= _a(t)fl(xu yvsz) - b(t)fZ(xuyvz) - c(t)fi’:(x?y) - d(t)f4(l') +p(t7$7y, va)u
2.1)

which is obtained from (1.1) by setting 2=y, 2= z and = w.
For the proof of the theorem our main tool is the function V = Vy(¢, z, y, z, w)

defined as follows:

Wo= 20d(1) g‘ F1(O)dC + 2(;(7:)0]’ Fol, C)dc

z

+[A20&2b(t) - A1a4d(t)]y2 + a(t)@lz2 + 2Alb(t) f fZ(xa Y, C)dC
0 (2.2)

—Ao2? + Ayw? + 2d(t)y fa(z) + 2A1d(t)z f4(x)

+2A%a(t)aryz + 2A1¢(t)z f3(x,y) + 2A2yw + 2zw + k,
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where

Al = +€, A2 = +e (23)
apQ1 Coa3

and k is a positive constant to be determined later in the proof.

Now we will obtain some basic inequalities which will be used in the proof of
the result.

By noting (2.3), (i) and (iii) we obtain

1 — ———— >¢, forall z,y,z and all t € R, (2.4)
a(t)aq

_ Doy
c(t) f3(z,y)
In view of (2.3), (i) and (iv) it follows that

AV >¢, forallz,y#0andallt € RT. (2.5)

asb(t) — Alc(t)a%fg(x, y) — Asa(t)ay

1
— QoCoxi1ax3

{aobocoalagag — C2a38%f3(x, y) — AzDa%oq}

- [C(f)%f3($7 y) + a(t)ad €

> oot = [ 3 ol y) + alt)aa] .

Also (iv) implies that

0 apbocoary oo apbocoazars
— _— —_— 2.
8yf3(‘ray) < C2 ) o) < A2D044 ( 6)
Hence
asb(t) — Ave(t) 2 fo(a,y) — Asa(tyar > —20— _ oA (2.7)
2 1 By 3T,y 2 1= G0Co0NL 03 05 .
for all z,y,z and all t € RY.
Let @3 be the function defined by
f3(Zv?l)’ y 75 0
P3(v,y) = (2.8)

a@yfi%(xao), y:O
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

Then from (iii) and (v) we have
D3(z,y) > ag for all z and y, (2.9)

0< agf?)(x,y) — ®3(x,y) <& for all z and y. (2.10)
Y

From (2.9), (i) and (2.3) we get

_ DO[4
() ®3(z,y)

To prove the present theorem we need the following two lemmas:

Ag >¢, forall z,y and allt € RT. (2.11)

Lemma 1. Subject to the conditions (i)-(ix) of the theorem, there are positive

constants Dy, and Do such that
Dy[Fy(x) +y* + 2% +w? + k] < Vo < Do[Fy(x) + 9> + 22 + w? + k] (2.12)

for all x,y,z and w.

Proof. Since fa(z,y,0) =0 and M > ag (2 #0), it is clear that

2A1b(t>/f2($,y,C)d< 2 Alb(t)ozgzz.
0

Therefore it follows from (2.2) that

x

205> 28d(t) [ F1(OC + 200 Of £z, OdC + [Doasb(t) — Arasd(t)]y?

+a(t)a2? + Arb(t)agz? — Ag2? + Ajw? + 2d(t)y fa(x) + 2A1d(t) 2 f4(x)

+2Aq0a(t)anyz + +2A1¢(t) 2 f5(z, y) + 2A2yw + 2zw + k.

Rewrite above inequality as follows:

o) [d() 2

2Vh > B3(z,3) [C(t)h(fﬂ) + y®Ps(z,y) + A1Z‘I)3(337y)}
at) [w [ e OB
4 L(t)+ ot A 1@/} T 2080a() 0/ (@ - )
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Y

+H[Agb(t)ag — Ard(t)oy — Ala(t)aq )y + 2¢(t) / f3(z,Q)d¢ — c(t)®3(z, y)y?
0

1
+H[Aab(t) — Ay — A2c(t)D3(z,y)]2? + [Al — a(t)al] w? + k.
From (2.4) we get
Al — ; w? > ew?
Y abon - '
Then
2o > Vi + Vo + Va +ew? + k, (2.13)
where
_ f &2 (1) f3(x)
Vi 2at) [ A0 g

0

Vo i= [Agagb(t) — Ajoud(t) — A%a(t)al]yQ + 2¢(2) / f3(z,Q)dC — c(t)Ps(, y)y2’
0

Vs i= [Aranb(t) — Ag — A2e(t)®3(x,y)]22

From (2.3), (2.9) and (i) we find

xT xT

Vi > 2ed(t) [ f4(Q)d¢ + 24D 120y [ f4(C)dC — f3(x)

0 0

x

z%wwhwa+%%jm—ﬁ@M@a

0

Since the second integral on the right hand side is non-negative by (ix), it clear that

2%/ﬂ@«—ﬁwza (2.14)
0
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

So Vi > 2edy [ f4(¢)d¢. Also from (2.3), (iii), (i) and (2.7) we obtain
0

AQOLQb(t) — A1a4d(t) — A%a(t)al
= AQ {agb(f) — Alc(t)i%fg(ﬂ?,y) — Aga(t)al]
+A, {Agc(t)é%fg(l', y) — a;;d(t)}

> AQ {agb(f) — Alc(t)i%fg(l‘,y) — Aga(t)al]

> D‘“( % —5A0).

Coa3 apCox1 &3

Since

Y

[ el = uhi(e) = [ .0

0

= 20s(a,y) — | fale, OdC.

0

then

2(t) | folw, Q)¢ — clt)®s(z, )y dwﬁﬁwaoafciﬁ@@wd

0
:d@jﬁg%m—%hWKHMC

> ~Shy2, by (2.10).

Therefore we have

DO[4 (5() 0(51 2 C 20[4D60 2
Vo > —eNg | — — > — | ——m—5 -9 by (1.2).
2= [coocg (CloC()OélOég c 0) 2 }y ~ 4 \ Capai 3o 1) yS by (1.2)
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Similarly, from (2.3), (i), (2.10) and (2.7) we obtain

Al()égb(t) — Ag — A%c(t)Qg(x, y)
= Ajfasb(t) — A1c(t)Ps(z,y) — Aza(t)ar] + As[Aja(t)ay — 1]
> Al[agb(t) — Alc(t)agyfg(x, y) — AQQ(t)Oél]

>

L S — EAQ) .

apo (aocwlas

Therefore we obtain

V3 > 1 ( % — 5A0> 22, by (1.2).

apQy apCo13

Combining the estimates for V4, V5 and V3 with (2.13) we find

C 20[4D50 2 350 2 2
2Vh > 2edy F. —==—5—= -4 e k.
0= 2edoFalw) + 5 <Ca00410304§ 1>y " 4ageoadas ) et

Then there exists a positive constant D, such that
Vo = Di[Fu(x) +y° +2° +w® + k.

Easily,by noting the hypothesis of the theorem, it can be followed that there exists a

positive constant Dy such that
Vo < Do|Fy(zx) + 2+ 22+ w4 k.

Therefore (2.12) is verified.

Lemma 2. Under the conditions of the theorem there exist positive constants

Dy, D5 and Dg such that

Vo< —Ds(y? + 22 + w?) + V3D (y? + 2% + w?) 2 [py(t) + pa(t)]
(2.15)

+V3Depa (1) [Fa(z) + y* + 2% + w?] + DayoVo.
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

Proof. An easy calculation from (2.2) and (2.1) yields that
d Vo Vo Vo OV Vo

" ow T T eyt T Y T

= _Ala(t)wfl(xaya va) - AQb(t)ny(xaya Z) - A2C(t)yf3(x7y) - b(t)ZfQ(xayVZ)

Yy z z
0 0 0
ety [ 5 e QA+ A0z [ 5L o Odc+ 8able)y [ 3 Fala O
0 0 0

+A2a(t)a122 + [Aganb(t) — Ajaud(t)]yz + Alc(t)zz%fg(x, )

etz e o) + (O () + Dad(D)y= ()

*AZCL(t)yfl (LIJ', Y, 2, '(U) + AQQ(t)alyw

oV,
—a(t)zfi(z,y, z,w) + a(t)arzw + (Agy + z + Ayw)p(t, 2, y, 2, w) + 570

Since

/ 5ol C)dC < 0, by (vi) and / (2,1, )¢, by (vi).
0
Then we find that

Vo ==(Va+Vs+Vs+Vz+V8) — Aoa(t)yfi(z,y, 2,w) + Asa(t)aryw

—a(t)zf1(2,y, z,w) + a(t)arzw + (Agy + 2z + Ayw)p(t, z,y, 2, w) + G,

(2.16)
where

Vi i= Baclt)yfa(e.9) — ad(O — ety [ -l O = Daclt)y - fola.v)
0

Vs = |aab(t) — Alc(t)%fg(x,y) — Aga(t)ay 22,

Vo = [Aa( LELE) e
Vo = 2b(t) f2(2, y, 2) — ab(t)2? + Aab(t)yfo(z,y, 2) — Asaab(t)yz
Vs 1= aud(t)y® — d(t) fi(z)y? + Araud(t)yz — Ard(t) f1(z)yz
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But

Vi = c(t)®3(z,y) [A2 a C(t)gﬁ

Yy
> ceoagy® — Cy / 2 .~ AaCyz fia,),
0
by (i), (2.9) and (2.11).

Vs :@ww—Awm%hmw—Aw@mz2

> ( % —£A0> 22, by (2.7),

apCox1 3

Vo = [Ala(t)fl(%’z’w) —1Jw? > eaparw?,
by (i), (ii) and (2.3).

Vo =b(t) [M - 042} (22 4+ Agyz), for 2 #0

z

2_%WWM%Q_%h{bﬂw)

By using (vii) and (2.3) we get for z # 0

A% f2($7y72) 1 Day ? EOCgag)
—=b(t) | ————— — < =b(t
4 ®) [ z “2| =7 ®) coas e BD?a?

1 CcoOv3 2 €0Co03
==-b(t)(1 — <
1 ()( + Da4€> 5 = focoas,

since € <

Da
oot by (1.2). Then

Vi > —egcoasy? for all ,y and z # 0,
but V7; =0 when z =0, so

Ve > —soc(]a3y2 for all x,y and z.

By (ix)

2
Ve = d(b)os ~ @)W+ duw2) > ~Sd0]on — £

124
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

From (ix) and (2.3) we find

A2 , 1 1 ? eAgada?
% _ < =
1 A®las = fi(2)] < 7d(?) (aoa1 +€> i)

2 €0¢

1
= id(t) (14 apaqe) < ely,

since € < ?10[1 by (1.2). Thus it follows that
Vg > —eAg22. (2.21)
From (2.17) and (2.20) we have, for y # 0,

Y
Va+Vz > |(e —eo)coas — %f &f:s(%()@} y? — A1 Cyz 2 f3(z,y)
0

> 3(e —eo)coasy?® — A1CyzL f3(z,y), by(viii)

= %(5 — e0)coazy” + i(f — €0)co03 [y2 - %yz%fs(%y)}

Y%

A2C2 2
1(e — eo)coasy® — T=c0)cos [%f3(37>y)] 22

dg 2

1. _ 2 _ _ 60
> 5(e —€o)cozy Tagoncoos 2

by using (vii), (2.3) and (1.2). But V4 + V7 = 0, when y = 0,by (2.17) and (2.20);
therefore we have

1 0
Vi+ Ve > (e — o)coasy® — — 0 2% forallyand 2. (2.22)
2 4a0alcooz3

From the estimates given by (2.18), (2.19), (2.21) and (2.22) we get

360

. 1
Vo< —=(e — 20
0= 2 (6 Eo)Coagy (40,0600(10(3

— 25A0> 22

—eaponw? — a(t)zfi(z,y, z,w) + a(t)azw

oV
_AZG‘(t)yfl (1.7 Y, 2, U)) =+ AQQ(t)alyw + (AQy +z+ Alw)p(t7 z,Y, %, ’IU) + =2

ot
< —1(5 —e0)coazy® — 1670% —cagayw? — a(t)zf1(z,y, 2, w) + a(t)azw
- 2 4 agcoop g

oVq
_A2a(t)yf1 (ZL’, Y, 2, U}) + A2a(t)a1yw + (AQy +z+ A11U)p(t, z,Y, %, ’ZU) + aitov (223)
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since € < w‘iﬁ by (1.2).Consider the expressions
1 o 1 s 1 2
W1 =——(e —eo)coasy” — = (e — €g)coasy” — —eapiw
4 4 3
—Aga(t) fl(xayvz7w) _ 0[1:| yw
w
and
1 1) 1 1) Y, 2,
Wy = S R S NS —cagaqw? — a(t) {fl(myzw) — a1 | 2w
2 apcpa g 2 agcoa g 3 w

which is contained in (2.23). Because of the inequalities

—W1 = X(e — eo)coasy® + 1 (e — e0)coasy® + teagow?

+Aqa(t) [7f1(l’y’z’w) — 041} yw

w

2
> i(€ — e0)coasy® + [%\/ £ —¢eo)coas |y| £ 3€aoa1 |w|}

and

“We = L__d0 241 b 24 1, 2 4 (t) fi(zyzw)

2= 132 aocoalagz 2 aocoalagz 3 o w a w Q1| 2w
1 [ 2 1 1 2

2 50.()6()3410432 + |: iaoCoala;; | |:l: §5a0a1 |w‘:|

>0, by(ii),
it follows that

1
Wi < 1(5 — e0)cosy’,
1 1)
Wy < —=—2 52

—1
2 apCpi1 (3
Hence, a combination of the estimates Wy and Wa with (2.23) yields that

y 1 2 1 8 2
Vo S—z(g_Eo)COOéBy — oo

2 apCotx1 (3 3Ea0alw

+(Asy + 2 + Ayw)p(t, z,y, 2, w) + 8V°
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

From (2.2) we obtain

% = d(t) [%oqu + %Agalyz]
+0'(t) [Alfzﬁ(%y?@dg + iﬁzazyz] + (1) [}J f3(x,Q)d¢ + Arz f3(z, y)
0 0

xT
40|80 [ IO - 101007 4 yfale) + A12fi(0)].
0
From the assumptions in the theorem, (2.6) and (2.14) we have a positive constant
Dg satisfying

8‘/ / / /
(Tto < Dslla’(t)] + 0, () + | ()] + |d' (O ][Fa(@) + y* + 2% + w?] < DaroVo,

by using the inequality (2.12), where Dy = g—i.Therefore one can find a positive

constant Dy such that
Vo< —2D5(y? + 2% + w?) + (Aay + 2 + Ayw)p(t, z,y, 2,w) + DayoVo.
Let Dg = max(Aq, 1,Aq), then

Vo < -2Ds5(y?+ 2% +w?) +vBDs(y? + 22 + w2 |p(t, x,y, z,w)| + DyvoVo

IN

—2Ds5(y? + 2% + w?) + V3Dg(y? + 22 + w?)/? {p1(t)

+ po(W)[Fa(x) + y% + 22 + w2 + A(y? + 22 + w?)Y2} + Dyyo V.

Let A be fixed, in what follows, to satisfy A = —25— with this limitation on A we

V3Dg
have
Vo< —Ds(y? + 22 + w?) + V3Ds(y? + 22 + w?)M/? {pi (1)
(2.24)
+p2()[Fa(w) +y° + 22 + w?)*2} + DinoVo.
Note that
[Fa(x) + 92 + 22 + w2 <1+ [Fy(z) + 92 + 22 + w2 (2.25)
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From (2.24) and (2.25) we find

Vo< —Ds(y? + 22 + w?) + V3Dg(y? + 22 + w?)2[py (1) + pa(t)]

+v3Dgp2(t)[Fa(x) + y? + 2% + w?] + Dyvo Vo

3. Completion of the Proof

We define
t
V(t,z,y,z,w) = exp —/’)/(T)dT Volt, z,y, z,w), (3.1)
0
where
10) = i+ 25228 gy 1) 4 ). 82

Then it is easy to see that there exist two functions U;(r), Uz (r) satisfying
Ui(llzl) < VIt 2y, 2,w) < Us(||7]]), (3:3)

for all ¥ € R* and t € R* where U;(r) is a continuous increasing positive definite

function, U;(r) — oo as r — oo and Uz(r) is a continuous increasing function.

From (3.1), (2.15), (3.2) and (2.12) we have

v=exp (= [2(n)dr | [Vo (V]
0

<exp | — /’Y(T)dT {—D5(y2 + 22 +w?) + V3Dg (2 + 22 + w?) Y2y () + pa(t)]
0
—V3Dg[p1 (1) + pa()][Fa(z) + 42 + 22 + w? + Qk]}
<exp [ — /V(T)dT {=Ds(y* + 2° + v?)
0

—V3Dg[pa(t) + pa(t)] K\/M— 1> Ly 2k]

2 4

} |

V< —Di(y? + 22+ w?) = —U(|Z]). (3.4)

Setting k > %, we can find a positive constant D7 such that
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A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

From inequalities (3.3) and (3.4) it follows that all the solutions (z(t), y(t), z(t), w(t))
of (2.1) are uniformly bounded [12; Theorem 10.2].

Auxiliary Lemma

We consider a system of differential equations
7= F(t,T) + G(t,T), (3.5)

where F(t,%) and G(t,T) are continuous vector functions on R™ x Q (Q is an open
set in R™). We assume

Gt D) < G1(t,T) + G2(7),

¢
where G (t, T) is non-negative continuous scalar function on Rt x Q and [ Gy(r,Z)dr
0

is bounded for all ¢ whenever T belongs to any compact subset of @ and G2(T) is a
non-negative continuous scalar function on Q.
The following lemma is a simple extension of the well-known result obtained

by Yoshizawa [12; Theorem 14.2].

Lemma 3. Suppose that there exists a non-negative continuously differen-
tiable scalar function V(t,Z) on R* x Q such that V35 (t,Z) < —U(||Z|)), where
U(||Z|) is positive definite with respect to a closed set ) of Q. Moreover, suppose that
F(t,T) of system (3.5) is bounded for all t when T belongs to an arbitrary compact
set in @ and that F(t,T) satisfies the following two conditions with respect to {2

(1) F(t,T) tends to a function H(T) forT € Q ast — oo, and on any compact
set in § this convergence is uniform;

(2) Corresponding to each ¢ > 0 and each § € €, there exist a §, § = §(e,7)
and a T =T(e,y) such that if t > T and |T — 7|| &, we have |F(t,Z) — F(e,7)| < e.
And suppose that

(8) Go(T) is positive definite with respect to a closed set Q of Q.

Then every bounded solution of (3.5) approaches the largest semi-imvariant

set of the system T= H(T) contained in Q ast — oc.
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Proof. (See [7]) From (2.1) we set F' and G in (3.5) as follows

Y

z
F(t,7) =
w

_a’(t)fl (x,y, va)w - b(t)f2(x,y7 Z) - C(t)f3($, y) - d(t)f4($)

p(t, @, y, 2, w)
Thus from (xi) we find

IG(t,T)|| < p1(t) + pa(t)[Fa(w) + y* + 2% + w2 + A(y? + 22 + w?) /2
Let
G1(t,T) = pr(t) + p2()[Fa(z) + 12 + 22 + w?]%/? and Go(T) = A(y? + 22 + w?)'/2.

Then F'(t,7) and G(t,T) clearly satisfy the conditions of Lemma 3.
Now U(||Z]|) in (3.4) is positive definite with respect to the closed set Q =
{(z,y,z,w) |x € R,y =0,z =0,w = 0}, it follows that, in Q,

0

0
F(t,7) = .
—d(t) fa(z)

From (i) and (x), we have d(t) — ds as t — oo where 0 < dy < doo < D. If we set

0
0

H(z) = , (3.6)
0

_doof4 (l‘)
then the conditions on H(Z) of Lemma 3 are satisfied. Moreover G2(T) is positive
definite with respect to a closed set 2.
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Since all of the solutions of (2.1) are bounded, it follows from Lemma 3
that every solution of (2.1) approaches the largest semi-imvariant set of the system

T= H(T) contained in Q as t — co. From (3.6), T= H(T) is the system
=0,y=0,%=0,w= —dw f1(z),

which has the solutions x = k1,y = ko, 2z = kg, w = ks —doo f4(k1)(t—tp). To remain in
Q; ko = ks =0 and kg — doo f4(k1)(t —to) = 0 for all ¢t > o which implies k; = k4 = 0.

Therefore the only solution of Z= H (T) remaining in § is 7 = 0, that is, the
largest semi-invariant set of Z= H(T) contained in  is the point (0,0,0,0). Then it

follows that

x(t) = 0,y(t) — 0,2(t) = 0,w(t) = 0 as t — oo,

which are equivalent to (1.4).

This completes the proof of the theorem.
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