
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 1, March 2006

MONTE CARLO METHODS FOR SYSTEMS
OF LINEAR EQUATIONS

NATALIA ROŞCA

Abstract. We study Monte Carlo methods for solving systems of linear

equations. We propose three methods to generate the trajectories of the

Markov chain associated to the system. We calculate the average complex-

ity of generating the trajectories using these methods. From the complex-

ity point of view, the proposed methods are better than other methods

reported in the literature.

1. Introduction

We consider the system of linear algebraic equations:

Ax = b, (1)

where A = (aij)n
i,j=1 ∈ Rn×n is a given invertible matrix and b ∈ Rn is a given vector,

b = (b1, . . . , bn)t. We are interested in estimating the solution x = (x1, . . . , xn)t ∈ Rn

of system (1), using Monte Carlo methods. For this, we write the system in the

following form:

x = Tx + c, (2)

where T = (tij)n
i,j=1 ∈ Rn×n, c = (c1, . . . , cn)t ∈ Rn and I−T is an invertible matrix.

The solution x admits the Neumann series representation:

x = c + Tc + T 2c + T 3c + . . . (3)

It is assumed that
∑n

j=1 |tij | < 1, i = 1, . . . , n, which is a sufficient condition for the

convergence of Neumann series to the solution.
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The first Monte Carlo method for solving systems of linear equations was

proposed by von Neumann and Ulam, and extended by Forsythe and Leibler [5]. For

further details, see [6] and [9]. The method is efficient when we are interested in

estimating one component of the solution.

2. Monte Carlo methods to estimate the solution of the system

There is also a Monte Carlo method for solving systems of linear equations,

which allows to estimate the entire solution, by constructing unbiased estimators for

the components of the solution.

To solve system (2), let P = (pij)n+1
i,j=1 ∈ R(n+1)×(n+1) be a matrix, whose

elements satisfy the conditions:

1. pij ≥ 0 such that tji 6= 0 =⇒ pij 6= 0,

2.
∑n

j=1 pij ≤ 1, i = 1, . . . , n,

3. pi,n+1 = 1−
∑n

j=1 pij , i = 1, . . . , n,

4. pn+1,j = 0, j < n + 1 ,

5. pn+1,n+1 = 1.

We also use the notation pi for pi,n+1. Furthermore, define the weights:

wij =


tji

pij
if pij 6= 0

0 if pij = 0
, i, j = 1, . . . , n. (4)

The matrix P describes a Markov chain with states {1, . . . , n + 1}, where n + 1 is

an absorbing state and pij , i, j = 1, . . . , n + 1 is the one step transition probability

from state i to state j. Such a Markov chain is also called a random walk, as it is

homogeneous and finite.

Denote by γ = (i0, i1, . . . , ik, n+1) a trajectory that starts at the initial state

i0 < n+1 and passes successfully through the sequence of states (i1, . . . , ik), to finally

get into the absorbing state ik+1 = n + 1. Consider a vector α = (α1, . . . , αn), where

αi, i = 1, . . . , n is the probability that a trajectory starts in state i, in other words,

P (i0 = i) = αi, αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αi = 1.

The probability to follow trajectory γ is P (γ) = αi0pi0i1 . . . pik−1ik
pik

.
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Define the estimators θi, i = 1, . . . , n and λi, i = 1, . . . , n on the space of

trajectories as follows. For a trajectory γ = (i0, i1, . . . , ik, n + 1), the values of these

estimators are defined as:

θi(γ) = Wk(γ)
δiki

pik

, λi(γ) =
k∑

m=0

Wm(γ)δimi, i = 1, . . . , n,

where Wm, m = 0, . . . , k are random variables whose values are:

W0(γ) =
ci0

αi0

,

Wm(γ) = Wm−1(γ)wim−1im

=
ci0

αi0

wi0i1wi1i2 . . . wim−1im , m = 1, . . . , k.

The above values are taken with probability P (γ) (δij is the Kronecker symbol, i.e.,

δij = 1 if i = j and 0 otherwise).

It can be proved that θi and λi are unbiased estimators of xi, i.e.: E(θi) =

E(λi) = xi, i = 1, . . . , n.

The Monte Carlo Algorithm to estimate the solution of system (2) is the

following:

Algorithm 1. Monte Carlo Algorithm to estimate the solution x

1. Input data: the matrix Tand P , the vectors c and α, the integer n.

2. Generate N trajectories γ1, . . . , γN .

3. Compute the Monte Carlo estimate of the solution:

x̂ =

[
θ1(γ1) + . . . + θ1(γN )

N
, . . . ,

θn(γ1) + . . . + θn(γN )
N

]t

. (5)

or, the estimate:

x̃ =

[
λ1(γ1) + . . . + λ1(γN )

N
, . . . ,

λn(γ1) + . . . + λn(γN )
N

]t

. (6)

3. Complexity of the Monte Carlo Algorithm

To compute the complexity of Algorithm 1, we assume that:

1. The costs of all arithmetical operations are equal, i.e., CP (+) = CP (−) =

CP (∗) = CP (:) = 1.
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2. The cost of testing any of the inequalities x < y, x > y, x ≤ y or x ≥ y or

the equality x = y is d arithmetical operations.

3. The cost of generating one random number uniformly distributed on [0, 1)

is 3 arithmetical operations, as we use the linear congruential generator to generate

random numbers.

Next, we analyse the complexity of each step of Algorithm 1.

3.1. Complexity of generating the trajectories. To start a trajectory, we sample

from the following discrete distribution:

Yα :

 1 2 . . . n

α1 α2 . . . αn


described by the probability vector α, in order to get the initial state i0 ∈ {1, 2, . . . , n}.

Once the trajectory is in state im = i, i ∈ {1, 2, . . . , n}, we sample from the discrete

distribution:

Yi :

 1 2 . . . n n + 1

pi1 pi2 . . . pin pi


described by the i-th line of matrix P , in order to determine the next state im+1. We

repeat this procedure till absorbtion takes place.

The total number of steps before absorption is
∑n

i=1 Ci, where Ci denotes

the number of times a trajectory visits the non-absorbing state i. Let z = (z1, . . . , zn)

be the solution of system z = P̄ z + α, where P̄ is the transpose of matrix (pij)n
i,j=1.

The expectation of the random variable Ci is E(Ci) = zi, i = 1, . . . , n ([7]).

Denote by CP the (computational) complexity of generating a trajectory, de-

fined as the number of arithmetical operations needed to generate it. For a trajectory,

we sample from Yα once, at the beginning of the generation process. The number of

times we sample from Yi is Ci. Let CPYα
and CPYi

denote the number of operations

needed to generate a sample from Yα and Yi, respectively. It follows that the average

complexity of generating a trajectory is given by:

E(CP ) = E(CPYα) +
n∑

i=1

ziE(CPYi). (7)
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There are several methods for sampling from discrete distributions (see [3] or

[4]). In [7] three such methods are used: the inversion, the acceptance-rejection and

the alias method. The following results for the average complexities of generating a

trajectory were obtained:

E(CPinv) ≤ (d + 1)(‖z‖1 + 1)n, (8)

E(CPrej) ≤ (d + 9)(‖z‖1 + 1)n, (9)

E(CPalias) = (d + 9)(‖z‖1 + 1). (10)

In the following, we use three methods: the decomposition, the economical

and the table look-up method to sample from Yα and Yi, i = 1, . . . , n. We calculate

the average complexity of generating a trajectory and compare our results with the

results (8)-(10).

3.2. Generating trajectories using decomposition method. We describe how

we can generate a trajectory using the decomposition method to sample from Yα and

Yi, i = 1, . . . , n. Decomposition method is based on the following result (see [3]):

Theorem 1. Any discrete distribution Y with m possible values can be written as

the weighted sum of m distributions ξ1, ξ2, . . . , ξm, each taking two possible values and

having weight 1/m.

Next, we consider Y = Yα and we describe how we can construct the distribu-

tions ξ1, . . . , ξn (in this case m = n). For the sake of simplicity, we denote the values

1, 2, . . . , n of distribution Yα by y1, . . . , yn, respectively. Thus, Yα has the following

form:

Yα =

 y1 y2 . . . yn

α1 α2 . . . αn

 .

We assume that α1 ≤ 1/n and α2 ≥ 1/n, otherwise we look for two such

probabilities in distribution Yα and re-index them to 1 and 2, respectively. First, we

decompose the distribution Yα into the two-point distribution ξ1 and the n− 1 point

distribution η1 with weights 1/n and (n− 1)/n respectively, i.e.,

Yα =
1
n

ξ1 +
n− 1

n
η1. (11)
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It can be shown that these distributions have the following form:

ξ1 =

 y1 y2

q1 q2

 η1 =

 y2 y3 . . . yn

α
′

2 α
′

3 . . . α
′

n

 ,

where q1 = nα1 and q2 = 1− nα1 and

α
′

2 =
n(α1 + α2)− 1

n− 1
, α

′

j =
n

n− 1
αj , j = 3, . . . , n.

Distribution η1 is further decomposed into the two-point distribution ξ2 with

weight 1/(n − 1) and the (n − 2)-point distribution η2 with weight (n − 2)/(n − 1),

i.e.,

η1 =
1

n− 1
ξ2 +

n− 2
n− 1

η2. (12)

These distributions can be constructed as described above. Substituting (12)

into (11), one obtains that the weight of ξ2 in the decomposition of Yα is 1/n as

well. In a similar way distributions ξ3, . . . , ξn are constructed. Their weights are 1/n.

Thus, Yα can be written as:

Yα =
1
n

ξ1 +
1
n

ξ2 + . . . +
1
n

ξn, (13)

where the distributions ξi, i = 1, . . . , n have the following form :

ξi =

 yi1 yi2

qi1 qi2


with yi1, yi2 ∈ {y1, . . . , yn} (i.e. yi1, yi2 ∈ {1, . . . , n}) , i = 1, . . . , n.

Now, we give the procedure that generates a sample from Yα.

Algorithm 2. Decomposition Algorithm

1. [Set-up step] Construct distributions ξ1, . . . , ξn.

2. [Selecting the distribution ξi] Generate u uniformly distributed on [0, 1) and set

i = [nu] + 1 (i is uniformly distributed over {1, 2, . . . , n}).

3. [Generating a sample from the distribution ξi] Generate v uniformly distributed

on [0, 1), if v < qi1 then return yi1, otherwise return yi2.

A similar algorithm can be written for sampling from Yi, i = 1, . . . , n.

Concerning the complexity, we obtain the following main result.
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Theorem 2. The average complexity of generating a trajectory using the decomposi-

tion method is:

E(CPdec) = (d + 8)(‖z‖1 + 1). (14)

Proof. Algorithm 2 requires the generation of 2 random numbers, 1 comparison, 1

multiplication and 1 addition. We omitted the integer part operation and the com-

plexity of the set-up step. From formula (7), we obtain that the average complexity

of generating a trajectory with decomposition method is given by:

E(CPdec) = E(CPYα) +
n∑

i=1

ziE(CPYi) = (d + 8) +
n∑

i=1

zi(d + 8)

= (d + 8)(‖z‖1 + 1).

Corollary 3. The average complexity of generating N trajectories using the decom-

position method is equal to (d + 8)(‖z‖1 + 1)N .

Remark. From (14) and (10), we obtain E(CPdec) < E(CPalias), which is an im-

provement from the complexity point of view.

3.3. Generating trajectories using economical method. We describe how to

generate a trajectory using the economical method to sample from Yα and Yi, i =

1, . . . , n. The economical method is a variant of the acceptance-rejection method,

where no generated value is rejected. This will lead to a decrease in the complexity

of generating a trajectory.

As previously illustrated, distribution Yα can be written as:

Yα =
1
n

ξ1 +
1
n

ξ2 + . . . +
1
n

ξn,

where the distributions ξi have the following form:

ξi =

 yi1 yi2

qi1 qi2

 , i = 1, . . . , n.

Recall that yi1, yi2, i = 1, . . . , n are among the values of distribution Yα.
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We assume that qi1 ≤ qi2, i = 1, . . . , n, otherwise qi1 and qi2 are inverted. In

the economical method, degenerated distributions with P (ξi = yi2) = 1 have to be

transformed into P (ξi = yi1) = 1/2, P (ξi = yi2) = 1/2, where yi1 = yi2.

The probabilities qi1, qi2, i = 1, . . . , n will be arranged into a vector r =

(r1, . . . , r2n), and correspondingly the values yi1, yi2, i = 1, . . . , n will be placed into

a vector v = (v1, . . . , v2n) as described below.

Algorithm 3. Set-up Step for Economical Algorithm

Initialize j = 1, m = 1, i = 1.

WHILE i ≤ n DO

IF qi1 < qi2 THEN [case of a non-degenerated distribution ξi]

Set rj ← qi1, r2n−j+1 ← qi2, vj ← yi1, v2n−j+1 ← yi2,

Increase j ← j + 1.

ELSE [case of a degenerated distribution ξi]

Set rn−m+1 ← qi1, rn+m ← qi2, vn−m+1 ← yi1, vn+m ← yi2,

Increase m← m + 1.

END IF

Increase i← i + 1.

END WHILE

Save n1 ← j, n2 ← n + m.

Note that the probabilities qi1 = qi2 = 1/2 occupy the positions rs, s =

n1, n1 + 1, . . . , n2 − 1, which are central positions of vector r. The probabilities

qi1 < qi2 occupy symmetrical positions in vector r.

The procedure that generates a sample from Yα is the following:

Algorithm 4. Economical Algorithm

Generate u1 uniformly distributed on [0, 1).

Compute j ← [2nu1] + 1 (j is uniformly distributed over {1, . . . , 2n}).

IF j ≥ n1 THEN RETURN vj

ELSE Generate u2 uniformly distributed on [0, 1).

IF u2
2 < rj THEN RETURN vj

ELSE RETURN v2n−j+1
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END IF

END IF.

A similar algorithm can be written for sampling from Yi, i = 1, . . . , n.

Concerning the complexity, we obtain the following main result.

Theorem 4. The average complexity of generating a trajectory using the economical

method is bounded by:

E(Cecon) ≤ (2d + 12)(‖z‖1 + 1). (15)

Proof. In Algorithm 4, the worst case scenario is the situation when both ELSE

instructions are executed. In this case, we have 2 random numbers generated, 2 mul-

tiplications (we count the multiplication 2n only once), 2 additions, 1 substraction,

1 division and 2 comparisons. We omitted the integer part operation and the com-

plexity of the set-up step. From formula (7), we get that the average complexity of

generating a trajectory with the economical method is:

E(CPecon) = E(CPYα
) +

n∑
i=1

ziE(CPYi
)

≤ (2d + 12) +
n∑

i=1

zi(2d + 12) = (2d + 12)(‖z‖1 + 1).

Corollary 5. The average complexity of generating N trajectories using the econom-

ical method is bounded by (2d + 12)(‖z‖1 + 1)N .

Remark. In the economical method the size n of matrix T is not included in the upper

bound, whereas in the acceptance-rejection method, the complexity is proportional to

n. As a consequence, the computing time is substantially reduced in the economical

method, comparing to the acceptance-rejection method.

3.4. Generating trajectories using table look-up method. The table look-up

method is a fast method to sample from Yα, in the particular case when the proba-

bilities αi are rational numbers with common denominator M , i.e., αi = mi/M , with

αi > 0, i = 1, . . . , n and
∑n

i=1 mi = M .
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First, we construct a vector D of size M with m1 entries 1, m2 entries 2, . . .,

mn entries n. Then, one element of this vector is picked up randomly (uniformly).

Obviously, this element is a sample from distribution Yα. The algorithm that gener-

ates a sample from Yα is:

Algorithm 5. Table Look-up Algorithm

1. [Set-up step] Construct a vector D = (D(1), . . . , D(M)), where mi entries are i,

i = 1, . . . , n.

2. Generate u uniformly distributed on [0, 1) and set j = [Mu] + 1 (j is uniformly

distributed over {1, . . . ,M}).

3. Return D(j).

If the transition probabilities are rational numbers with common denominator, a

similar algorithm can be written to sample from Yi, i = 1, . . . , n.

Concerning the complexity, we get the following theorem.

Theorem 6. The average complexity of generating a trajectory using the table look-up

method is:

E(CPtab) = 5 +
n∑

i=1

5zi = 5(‖z‖1 + 1). (16)

Proof. Algorithm 5 requires the generation of 1 random number, 1 multiplication and

1 addition. We omitted the integer part operation and the complexity of the set-up

step. From formula (7), we obtain the average complexity of generating a trajectory

with the table look-up method:

E(CPtab) = E(CPYα
) +

n∑
i=1

ziE(CPYi
) = 5 +

n∑
i=1

5zi

= 5(‖z‖1 + 1).

Corollary 7. The average complexity of generating N trajectories using the table

look-up method is equal to 5(‖z‖1 + 1)N .
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3.5. Complexity of evaluating the estimators. The average complexity of com-

puting (5) is equal to (2‖z‖1 + 1)N + n ([7]). The average complexity of computing

(6) is bounded by
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n .

3.6. Total Complexity. The average complexity of the Monte Carlo Algorithm 1

is the sum of the average complexity of generating N trajectories and the average

complexity of evaluating the estimator.

The following table contains bounds for the average complexity of the Monte

Carlo Algorithm 1, when the decomposition (DEC), the economical (ECON) and the

table-look up (TAB) methods are used to generate the trajectories.

Method Est. Upper bound for the average complexity

DEC θi (d + 8)(‖z‖1 + 1)N + (2‖z‖1 + 1)N + n

ECON θi (2d + 12)(‖z‖1 + 1)N + (2‖z‖1 + 1)N + n

TAB θi 5(‖z‖1 + 1)N + (2‖z‖1 + 1)N + n

DEC λi (d + 8)(‖z‖1 + 1)N +
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n

ECON λi (2d + 12)(‖z‖1 + 1)N +
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n

TAB λi 5(‖z‖1 + 1)N +
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n

Thus, the total average complexity of Algorithm 1 is O(N) + n.

4. Concluding remarks

1. We described how to generate the trajectories using decomposition method

and calculated the average complexity of this procedure. We found this is less then the

average complexity for the alias method, which is an improvement from the complexity

point of view.

2. We used the economical method to generate the trajectories. This leads

to a substantial decrease in the average complexity of generating the trajectories,

comparing to the acceptance-rejection method.

3. We used the table look-up method to generate the trajectory, in the case

when the initial and transition probabilities are rational numbers with a common

denominator. This leads to the smallest complexity.
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