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UNBOUNDED SOLUTIONS OF EQUATION
ẏ(t) = β(t)[y(t − δ) − a(t)y(t − τ )]

JOSEF DIBLÍK AND MIROSLAVA RŮŽIČKOVÁ

Abstract. This contribution is devoted to asymptotic behavior

(for t→∞) of solutions of first-order differential equation with two delays

ẏ(t) = β(t)[y(t− δ)− a(t)y(t− τ)].

Representation of solutions in an exponential form is discussed and in-

equalities for such solutions are given. As a consequence, existence of un-

bounded solutions is proved. An overview of known results and illustrative

examples are considered, too.

1. Introduction

1.1. The aim of the contribution. In this contribution we deal with asymptotic

behavior of solutions to a linear homogeneous differential equation with two delayed

terms containing two discrete delays

ẏ(t) = β(t)[y(t− δ)− a(t)y(t− τ)] (1)

for t → ∞. In (1) δ, τ ∈ R+, R+ := (0,+∞), τ > δ, β : I−1 → R+ is a continuous

function, I−1 := [t0 − τ,∞), t0 ∈ R and a : I → [0, 1], where I := [t0,∞), is a

continuous function. The symbol “ ˙ ” denotes (at least) the right-hand derivative.

Similarly, if necessary, the value of a function at a point of I−1 is understood (at least)

as value of the corresponding limit from the right . We show that increasing solutions

of (1) have representation

exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
(2)
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with a function ε̃ : I−1 → (0, 1). Such representation we call exponential . Represen-

tation (2) is then specified and a criterion connecting it with an integral inequality is

formulated. Since the equation considered is linear, the corresponding statements for-

mulated for increasing solutions are (under obvious modification) valid for decreasing

solutions etc. Let us note that close investigation of asymptotic behaviour of a solu-

tion of delayed functional differential equations is performed e.g. in papers [1]–[24].

The studied Eq. (1) (with a ≡ 1) occurs e.g. in the number theory [23].

The contribution is organized as follows: In Section 2 a basic auxiliary in-

equality is studied and the relationship of its solutions with solutions of Eq. (1) is es-

tablished. Exponential representation of monotone solutions is discussed in Section 3.

Section 4 contains main results of the paper concerning inequalities for solutions of

Eq. (1) and existence of unbounded solutions. An overview of known results and il-

lustrative examples are contained in Section 5. The paper ends with an open problem

formulated in Section 6.

1.2. Some definitions. Let us shortly recall basic definitions. Let C := C([−τ, 0], R)

be Banach space of continuous functions mapping the interval [−τ, 0] into R equipped

with the supremum norm.

A function y(t) is said to be a solution of Eq. (1) on [ν− τ, ν +A) with ν ∈ I

and A > 0, if y ∈ C([ν− τ, ν +A), R)∩C1([ν, ν +A), R), and y(t) satisfies the Eq. (1)

for t ∈ [ν, ν + A).

For given ν ∈ I, ϕ ∈ C, we say that y(ν, ϕ) is a solution of Eq. (1) through

(ν, ϕ) (or that y(ν, ϕ) corresponds to the initial point ν ), if there is an A > 0 such

that y(ν, ϕ) is a solution of Eq. (1) on [ν − τ, ν + A) and y(ν, ϕ)(ν + θ) = ϕ(θ) for

θ ∈ [−τ, 0].

Due to linearity of equation (1), the solution y(ν, ϕ) is unique and is defined

on [ν − τ,∞), i.e. in previous definitions we can put A := ∞.

2. An auxiliary inequality

Auxiliary inequality

ω̇(t) ≤ β(t)[ω(t− δ)− a(t)ω(t− τ)] (3)
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plays a main role in analysis of equation (1). A function ω(t) is said to be a solution

of (3) on [ν − τ, ν + A) with ν ∈ I and A > 0, if ω ∈ C([ν − τ, ν + A), R)∩C1([ν, ν +

A), R), and ω(t) satisfies the inequality (3) for t ∈ [ν, ν + A).

2.1. Inequalities between solutions of inequality (3) and equation (1). Below

we discuss some properties of solutions of inequalities of the type (3) and inequalities

between solutions of (1) and inequality (3).

Theorem 1. Suppose that ω(t) is a solution of inequality (3) on I−1. Then there

exists a solution y(t) of (1) on I−1 such that an inequality

y(t) ≥ ω(t) (4)

holds on I−1. In particular, a solution y(t0, φ) of Eq. (1) with φ ∈ C defined by relation

φ(θ) := ω(t0 + θ), θ ∈ [−τ, 0], (5)

is a such solution.

Proof. Let ω(t) be a solution of inequality (3) on I−1. Let us show that the solution

y(t) := y(t0, φ)(t) of (1) satisfies inequality (4) i.e.

y(t0, φ)(t) ≥ ω(t) (6)

on I−1. Due to definition of y(t) we have y(t) ≡ ω(t), t ∈ [t0 − τ, t0] and (4) holds on

initial interval [t0 − τ, t0]. Define on I−1 a continuous function

W (t) := y(t)− ω(t).

Function W is continuously differentiable on I. Then (taking into account inequal-

ity (3)) the estimation

Ẇ (t) = ẏ(t)− ω̇(t) ≥ Z(t)

with

Z(t) := β(t)[y(t− δ)− a(t)y(t− τ)]− β(t)[ω(t− δ)− a(t)ω(t− τ)] =

β(t)[W (t− δ)− a(t)W (t− τ)]
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is valid on I . Let t ∈ (t0, t0 + δ]. In view of (5) W (t− δ) ≡ W (t− τ) ≡ 0, Z(t) ≡ 0

and Ẇ (t) ≥ 0, i.e. (4) holds on (t0, t0 + δ]. Let t ∈ (t0 + δ, t0 + τ ]. In this case

W (t− τ) ≡ 0 and

Z(t) ≡ β(t)[y(t− δ)− ω(t− δ)] = β(t)W (t− δ) ≥ 0.

Consequently, Ẇ (t) ≥ 0, i.e. (4) holds on (t0 + δ, t0 + τ ], too. Let us show that

inequality Ẇ (t) ≥ 0 holds on the whole interval I. For it suppose the contrary, i.e.

suppose existence of a point t1 > t0 + τ such that

Ẇ (t) ≥ 0, t ∈ [t0, t1),

Ẇ (t1) = 0,

Ẇ (t) < 0, t ∈ (t1, t1 + ε), (7)

where ε < δ is a small positive number. Due to continuity of W (t) on I−1, our

construction and suppositions, such point t1 exists. Let t2 ∈ (t1, t1 + ε). Taking into

account that W (t) is nondecreasing on [t0, t1] we conclude W (t2−δ) ≥ W (t2−τ) ≥ 0.

Then

Ẇ (t2) = ẏ(t2)− ω̇(t2) ≥ Z(t2) = β(t2)[W (t2 − δ)− a(t2)W (t2 − τ)] ≥

β(t2)(1− a(t2))W (t2 − τ) ≥ 0.

The resulting inequality Ẇ (t2) ≥ 0 contradicts (7). 2

Remark 1. Let us note that an affirmation, opposite in a sense with the statement

of Theorem 1 is obvious. Namely, if a solution y(t) of (1) on I−1 is given, then there

exists a solution ω(t) of inequality (3) on I−1 such that inequality

ω(t) ≥ y(t) (8)

holds on I−1, since it can be put ω(t) ≡ y(t).

68
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2.2. A comparison lemma. Let us consider an inequality of the type (3)

ω̇∗(t) ≤ β1(t)[ω∗(t− δ)− a1(t)ω∗(t− τ)] (9)

where β1 : I−1 → R+ and a1 : I → [0, 1] are continuous functions satisfying inequali-

ties β1(t) ≤ β(t), a1(t) ≥ a(t) on I−1. The following comparison lemma will be used

below.

Lemma 1. Let the inequality (9) have a nondecreasing positive solution on I−1. Then

this solution is a solution of the inequality (3) on I−1, too.

Proof. Let ω∗ be a nondecreasing solution of inequality (9) on I−1. Then

ω̇∗ ≤ β1(t)[ω∗(t− δ)− a1(t)ω∗(t− τ)] ≤ β(t)[ω∗(t− δ)− a1(t)ω∗(t− τ)]

≤ β(t)[ω∗(t− δ)− a(t)ω∗(t− τ)].

Consequently, the function ω := ω∗ solves the inequality (3), too. 2

2.3. A solution of the inequality (3). It is easy to get a solution of inequality (3)

in an exponential form.

Lemma 2. Suppose that there exists a function ε : I−1 → R, continuous on I−1 \{t0}

with at most first order discontinuity at the point t = t0 and satisfying on I the

inequality

exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
≥ ε(t) + a(t) exp

[
−

∫ t

t−τ

ε(s)β(s) ds

]
. (10)

Then on I−1, there exists a solution ω(t) = ωe(t) of inequality (3) having the form

ωe(t) := exp
[∫ t

t0−τ

ε(s)β(s) ds

]
. (11)

Proof. Inequality (10) follows immediately from inequality (3) if a possible

solution ω(t) is taken in the form (11). 2

3. Properties of solutions of equation (1)

In this part we prove auxiliary results concerning solutions of equation (1).

Lemma 3. Let ϕ ∈ C is increasing and positive on [−τ, 0]. Then the corresponding

solution y(t∗, ϕ)(t) of (1) with t∗ ∈ I is increasing in [t∗ − τ,∞), too.
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Proof. Immediately, from the form of (1), we get sign ẏ(t∗, ϕ)(t∗) = +1 in the case

when the function ϕ increases on [−τ, 0]. The case ẏ(t∗, ϕ)(t∗∗) = 0 for a t∗∗ ∈ (t∗,∞)

and simultaneously sign ẏ(t∗, ϕ)(t) 6= 0 on interval t ∈ (t∗, t∗∗) is impossible because,

as it follows from (1) and from the properties of function ϕ, the inequality y(t∗∗−δ) >

y(t∗∗ − τ) holds and, consequently,

y(t∗∗ − δ)− a(t∗∗)y(t∗∗ − τ) 6= 0.

I.e. ẏ(t∗, ϕ)(t∗∗) 6= 0. 2

3.1. Exponential representation of solutions of equation (1).

Theorem 2. Every continuously increasing on I−1 and continuously differentiable on

I−1\{t0} solution y(t) of (1) with y(t0−τ) = 1 is on I−1 representable in exponential

form:

y(t) = exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
(12)

where ε̃ : I−1 → R+ := [0,∞) is a continuous function on I−1 \{t0} with at most first

order discontinuity at t0 and 0 < ε̃(t) < 1 on I.

Proof Let ϕ ∈ C, ϕ(t0 − τ) = 1 be increasing and continuously differentiable initial

function generating solution y(t) = y(t0, ϕ)(t). By Lemma 3 is y(t) increasing in I−1.

Define

ε̃(t) :=


ϕ′(t)

β(t)ϕ(t)
on [t0 − τ, t0),

ẏ(t)
β(t)y(t)

on I.

Then on I−1 representation (12) holds. Really, for t ∈ [t0 − τ, t0) we have

exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
= exp

[
ln

ϕ(t)
ϕ(t0 − τ)

]
= ϕ(t)

and for t ∈ I

exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
= exp

[∫ t0

t0−τ

ε̃(s)β(s) ds +
∫ t

t0

ε̃(s)β(s) ds

]
=

exp
[
ln

ϕ(t0)
ϕ(t0 − τ)

+ ln
y(t)
y(t0)

]
= y(t).
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Function ε̃ is on [t0 − τ, t0) nonnegative, since obviously ϕ > 0, ϕ′ ≥ 0 and β > 0.

Positivity of ε̃ on I is obvious, too since

ε̃(t) =
ẏ(t)

β(t)y(t)
=

y(t− δ)− a(t)y(t− τ)
y(t)

>
(1− a(t))y(t− τ)

y(t)
≥ 0,

i.e. ε̃(t) > 0. Moreover, on I,

ε̃(t) =
ẏ(t)

β(t)y(t)
=

y(t− δ)− a(t)y(t− τ)
y(t)

≤ y(t− δ)
y(t)

<
y(t)
y(t)

= 1,

i.e. ε̃(t) < 1. 2

Below is given a modification of previous result.

Corollary 1. There exists continuously increasing on I−1 and continuously differen-

tiable on I−1\{t0} solution y(t) of (1) with y(t0−τ) = 1, representable in exponential

form (12), where

ε̃ : I−1 → (0, 1)

is a continuous function on I−1 \ {t0} with at most first order discontinuity at t0.

The proof remains exactly the same if the initial function ϕ ∈ C is defined as

ϕ(θ) := exp

[∫ t0+θ

t0−τ

ε∗(s)β(s) ds

]
, θ ∈ [−τ, 0],

where ε∗ : [t0 − τ, t0] → (0, 1) is a continuous function. Then we can define corre-

sponding function ε̃ e.g. in the following way:

ε̃(t) :=


ε∗(t) on [t0 − τ, t0),

y(t− δ)− a(t)y(t− τ)
y(t)

on [t0,∞).

Remark 2. From the statement of Theorem 2 it follows that every continuously

increasing on I−1 and continuously differentiable on I−1 \ {t0} solution y(t) of (1)

with y(t0 − τ) = 1 satisfies on I the inequality

y(t) < exp
[∫ t

t0−τ

β(s) ds

]
. (13)

Moreover (as it follows from Corollary 1) there exists continuously increasing on I−1

and continuously differentiable on I−1 \ {t0} solution y(t) of (1) with y(t0 − τ) = 1,

such that inequality (13) holds on I−1 \ {t0 − τ}.
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4. Main results

The purpose of this part is to give an equivalence between existence of a

certain type of exponential behavior of solutions of (1) and existence of a solution of

inequality (3). The following result can be useful in the case when we need a concrete

inequality for indicated solution y = y(t) of (1).

4.1. Two equivalent statements.

Theorem 3. Let q : I−1 → (0, 1) be a given function such that the integral∫ t

t0−τ

q(s)β(s) ds exists for any t ∈ I−1. Then the following two statements are equiv-

alent:

a) There exists a continuously increasing on I−1 and continuously differen-

tiable on I−1 \ {t0} solution y = y(t) of (1) representable in the form

y(t) = exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
(14)

on I−1, where ε̃ : I−1 → (0, 1) is a continuous function on I−1 \ {t0} with

at most first order discontinuity at the point t = t0, such that

y(t) ≥ exp
[∫ t

t0−τ

q(s)β(s) ds

]
(15)

on I−1.

b) There exists a function ε : I−1 → (0, 1) continuous on I−1 \ {t0} with at

most first order discontinuity at the point t = t0 such that∫ t

t0−τ

ε(s)β(s)ds ≥
∫ t

t0−τ

q(s)β(s)ds (16)

on I−1, and satisfying the integral inequality (10) on I.

Proof

Part b) =⇒ a). In this case there exists (by Lemma 2) a solution ω(t) ≡ ωe(t) of

inequality (10) given by formula (14). Define

ϕ(θ) := ωe(t0 + θ), θ ∈ [−τ, 0].
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Since ϕ ∈ C is increasing and positive on [−τ, 0], then (by Lemma 3) solution y(t) =

y(t0, ϕ)(t) is increasing in I−1 and, by Theorem 1, satisfies on I−1 inequality (4), i.e.

y(t) ≥ exp
[∫ t

t0−τ

ε(s)β(s) ds

]
, t ∈ I−1.

Now is the inequality (15) a straightforward consequence of inequality (16). The

part b) =⇒ a) is proved.

Part a) =⇒ b). Let y(t) be a solution of (1) on I−1, having form (14), with

properties indicated in the part a). Then on I−1 \ {t0}:

ẏ(t) = ε̃(t)β(t) · exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
.

Let us put y(t) into (1). Then on I:

ε̃(t) = exp
[
−

∫ t

t−δ

ε̃(s)β(s) ds

]
− a(t) exp

[
−

∫ t

t−τ

ε̃(s)β(s) ds

]
.

Define function ε : I−1 \ {t0} → (0, 1) as ε := ε̃, and rewrite the last equality. For

t ∈ I we get

exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
= ε(t) + a(t) exp

[
−

∫ t

t−τ

ε(s)β(s) ds

]
,

i.e. the integral inequality (10) holds on I. Moreover, due to (15) we have

y(t) = exp
[∫ t

t0−τ

ε(s)β(s) ds

]
≥ exp

[∫ t

t0−τ

q(s)β(s) ds

]
,

i.e. the inequality (16) holds, too. This ends the proof. 2

Remark 3. Note that Theorem 3 remains valid if, instead of the supposition q :

I−1 → (0, 1), a more general supposition q : I−1 → R is used. But for some specifi-

cations of the function q the equivalence between statements a) and b) can lose sense

since the existence of solution y = y(t) satisfying inequality (15) can follows directly

from the statements of Theorem 2 or Corollary 1. E.g. the choice q(t) := 0 gives

no new information as well as the choice q(t) := ε̃(t). Theorem 3 generalizes and

improves Theorem 2 from [14], where the equation (1) with a(t) ≡ 1 was investigated.

The authors are grateful to R. Hakl for corresponding remark during discussions on
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International Conference on Nonlinear Operators, Differential Equations and Appli-

cations in Cluj-Napoca, Romania, August 2004, indicating a gap in formulation of

this result.

Remark 4. Let us underline that Theorem 3 together with Remark 2 give for solution

y(t) on I−1 estimation

exp
[∫ t

t0−τ

q(s)β(s) ds

]
≤ y(t) ≤ exp

[∫ t

t0−τ

β(s) ds

]
.

4.2. Sufficient conditions for divergence. Conditions guarantee existence of un-

bounded solution can be derived easily from previous results. Let us formulate some

of them. From Theorem 1 we get

Theorem 4. Suppose that ω(t) is a solution of inequality (3) on I−1 such that

lim sup
t→∞

ω(t) = +∞.

Then there exists unbounded solution y(t) of (1) on I−1.

From Lemma 2, Theorem 1 and Theorem 3 (putting q(t) := ε(t)) we get

Theorem 5. Suppose there exists a function ε : I−1 → R, continuous on I−1 \ {t0}

with at most first order discontinuity at the point t = t0 satisfying
∫ ∞

ε(s)β(s)ds =

∞, and on I the inequality (10). Then there exists unbounded solution y(t) of (1) on

I−1 satisfying inequality

y(t) ≥ exp
[∫ t

t0−τ

ε(s)β(s) ds

]
(17)

on I−1. If, moreover ε is on [t0−τ, t0] positive then there exists increasing unbounded

solution y(t) of (1) on I−1, satisfying inequality (17).

5. Summary of known results and examples

5.1. Known results relative to equation (1). Let us recall some known par-

tial results concerning equation (1). In paper [12] conditions for convergence of all

solutions of equation (1) with a(t) ≡ 1 and δ = 1, i.e. the equation

ẏ(t) = β(t)[y(t)− y(t− τ)]. (18)
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are given. We reproduce one result as the first statement of following theorem. The

second part concerns of equation (1) with a(t) ≡ 1, i.e. the equation

ẏ(t) = β(t)[y(t− δ)− y(t− τ)]. (19)

and follows from results given in [3, 6].

Theorem 6. Let for all t ∈ I−1 and a constant p > 1 :

β(t) ≤ 1
τ
− p

2t
. (20)

Then each solution of (18) corresponding to the initial point t0 converges.

Let for all t ∈ I−1 exists a constant ρ such that

β(t) ≤ ρ <
1

τ − δ
. (21)

Then each solution of (19) corresponding to the initial point t0 converges.

In the paper [14] is proved following result concerning existence of unbounded

increasing solutions of (19).

Theorem 7. Let for all t ∈ I−1 with sufficiently large t0 and for a constant p ∈ (0, 1) :

β(t) ≥ 1
τ − δ

− p

2t
. (22)

Then there exists an increasing and unbounded solution of (19) as t →∞.

5.2. Examples. In this part we give two examples to demonstrate the influence of

the coefficient a to appearance of unbounded solutions.

Example 1. The first remark is obvious - the presence of coefficient a in Eq. (1)

enlarges, in the case a(t) 6≡ 1, the range for coefficient β. Consider the following

result to illustrate this phenomenon.

Theorem 8. Let for all t ∈ I−1 inequalities

β(t) ≥ 1
τ − δ

+
p

t
, 0 ≤ a(t) ≤ 1− b

t2
(23)

with constants p ∈ R, b ∈ R+ hold. Then there exists increasing and unbounded

solution y(t) of (1) as t →∞.
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Proof. Let us verify that the integral inequality (10) have (for sufficiently large values

t) a solution of the form ε(t) := α/t with α ∈ R+. Put in (10)

β(t) :=
1

τ − δ
+

p

t
, a(t) := 1− b

t2
, ε(t) :=

α

t
.

Then the left-hand side L(t) of (10) equals

L(t) ≡ exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
= exp

[
−

∫ t

t−δ

α

s

[
1

τ − δ
+

p

s

]
ds

]
=

(
t− δ

t

) α

τ − δ · exp
[
−αδp

t(t− δ)

]
.

Now we asymptotically decompose L(t) for t →∞ with sufficient accuracy for further

application. We get:

L(t)=
[
1− αδ

(τ − δ)t
+

αδ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
1
t2

+ O

(
1
t3

)]
×

[
1− αδp

t2
+ O

(
1
t3

)]

= 1− αδ

(τ − δ)t
+

[
αδ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− αδp

]
1
t2

+ O

(
1
t3

)
where O is the Landau order symbol. Decomposition of the right-hand side R(t)

of (10) leads to

R(t) ≡ ε(t) + a(t) exp
[
−

∫ t

t−τ

ε(s)β(s) ds

]

=
α

t
+

(
1− b

t2

)
· exp

[
−

∫ t

t−τ

α

s

[
1

τ − δ
+

p

s

]
ds

]

=
α

t
+

(
1− b

t2

)
·
(

t− τ

t

) α

τ − δ · exp
[
−ατp

t(t− τ)

]

=
α

t
+

(
1− b

t2

)
·
[
1− ατ

(τ − δ)t
+

ατ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
1
t2

+ O

(
1
t3

)]
×

[
1− ατp

t2
+ O

(
1
t3

)]

= 1 +
α

t
− ατ

τ − δ
· 1

t
+

[
ατ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− ατp− b

]
1
t2

+ O

(
1
t3

)
.
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Comparing L(t) and R(t), we see that for L(t) ≥ R(t) it is necessary to compare

coefficients of the terms t−2 because coefficients of the terms t0 and t−1 are equal. It

means we need the inequality

αδ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− αδp >

ατ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− ατp− b.

We see that for sufficiently small positive α this inequality holds since taking limit for

α → 0+, the limiting inequality 0 > −b is valid due to positivity of b. Consequently,

a function

ωe(t) := exp
[∫ t

t0−τ

ε(s)β(s)ds

]
= exp

[∫ t

t0−τ

α

s

(
1

τ − δ
+

p

s

)
ds

]
is (under supposition that t0 is sufficiently large) a positive solution of the integral

inequality (3) and, moreover, it is easy to verify that ωe(∞) = +∞. Let us show

that this solution solves every inequality of the type (10) (perhaps starting with a

different value t0) if the above fixed functions β and a (defined at beginning of the

proof) are changed by any functions β and a specifying in formulation of theorem by

inequalities (23). This statement is a straightforward consequence of Lemma 1 if in

its formulation

β1(t) :=
1

τ − δ
+

p

t
, a1(t) := 1− b

t2
.

Finally, by Theorem 4 with ω := ωe, there exists increasing and unbounded solution

y(t) of (1) as t →∞. 2

Remark 5. The discussed above influence of the coefficient a can be now treated as

follows. Slight perturbation of the coefficient a(t) := 1, in situation when Theorem 8

holds, leads to substantial enlargement or the range of the coefficient β (compare

inequalities (22) and (23)) such that the property of existence of increasing unbounded

solutions remains preserved.

Example 2. Let us show that unbounded increasing solution of (1) as t → ∞ can

exists even in the case when the inequality (20) holds. This can be caused due to

smallness of a.
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Theorem 9. Put β(t) := 1/
√

t on I−1 with t0 > τ . Let there exists a constant

q ∈ (0, 1) such that a : I → [0, q]. Then there exists increasing and unbounded

solution y(t) of (1) as t →∞.

Proof. Let us verify that the integral inequality (10) have a solution given by formula

ε(t) := 1/
√

t. We proceed similarly as in the proof of Theorem 8. The left-hand side

L(t) of (10) equals

L(t) ≡ exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
= exp

[
−

∫ t

t−δ

1
s

ds

]
= exp

[
− ln

t

t− δ

]
= 1− δ

t

Computation of the right-hand side R(t) of (3) leads to

R(t) ≡ ε(t) + a(t) exp
[
−

∫ t

t−τ

ε(s)β(s) ds

]
=

1√
t

+ a(t) exp
[
−

∫ t

t−τ

1
s

ds

]
=

1√
t

+ a(t) exp
[
− ln

t

t− τ

]
=

1√
t

+ a(t)
(
1− τ

t

)
<

1√
t

+ q
(
1− τ

t

)
.

Inequality L(t) ≥ R(t) will be valid if

1− δ

t
>

1√
t

+ q
(
1− τ

t

)
.

This inequality obviously holds for sufficiently large t since, by supposition, q < 1. So,

function

ωe(t) := exp
[∫ t

t0−τ

ε(s)β(s) ds

]
= exp

[∫ t

t0−τ

1
s

ds

]
=

t

t0 − τ

is (under supposition that t0 is sufficiently large) a solution of the integral inequal-

ity (3) and ωe(∞) = +∞. By Theorem 5, there exists increasing and unbounded

solution y(t) of (1) as t →∞ satisfying inequality y(t) ≥ t/(t0 − τ). 2

6. Open problem

Problem 1. Comparing inequalities (22), (23) the following open question arises.

Can be the affirmation of Theorem 8 improved in the following sense? Exists a func-

tion b∗ satisfying on I−1 inequalities

1− b

t2
< b∗(t) < 1
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such that formulated statement remains valid if for the function a inequalities

0 ≤ a(t) ≤ b∗(t)

on I−1 hold?

Acknowledgment

This research was supported by the Grant 1/0026/03 of the Grant Agency of

Slovak Republic (VEGA).

References
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[19] Györi, I., Ladas, G., Oscillation Theory of Delay Differential Equations, Clarendon

Press (1991).
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