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ON THE MORITA INVARIANCE OF THE HOCHSCHILD
HOMOLOGY OF SUPERALGEBRAS

PAUL A. BLAGA

Abstract. We provide a direct proof that the Hochschild homology of a

Z2-graded algebra is Morita invariant.

1. Introduction

The goal of this paper is to show that if R is an arbitrary superalgebra (i.e.

Z2-graded algebra) while Mp,q(R) is the (super)algebra of (p, q)-supermatrices over R,

then the two algebras have the same Hochschild homology (in the Z2-graded sense, see

(Kassel, 1986)). This, naturally, suggest the idea of introducing the notion of Morita

equivalence between two superrings and of proving that, in general, the Hochschild

homology for superalgebras should be Morita invariant. We should discuss this issues

at the end of the paper.

2. The Hochschild homology of superalgebras

The Hochschild complex for superalgebras (Kassel, 1986), is very similar to

the analogous complex for ungraded case. Namely, the chain groups are, as in the

classical case, Cm(R) = R⊗m+1, where, of course, the tensor product should be

understood in the graded sense, while the face maps and degeneracies are given by

δm
i (a0 ⊗ · · · ⊗ am) = a0 ⊗ · · · ⊗ aiai+1 ⊗ . . . an, if 0 ≤ i < m, (1)

δm
m(a0 ⊗ · · · ⊗ am) = (−1)|am|(|a0|+···+|am−1)ama + 0⊗ a1 ⊗ · · · ⊗ am−1, (2)

sm
i (a0 ⊗ · · · ⊗ am) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ am, 0 ≤ i ≤ m. (3)
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Now the differential is defined in the usual way, meaning dm : Cm(R) → Cm−1(R),

dm =
m∑

i=0

(−1)iδm
i . (4)

and the Hochschild homology of the superalgebra is just the homology of the complex

(C(R), d). In particular, it is easy to see that for any superalgebra R we have

H0(R) = R/{R,R}, (5)

where {R,R} is the subspace generated by the supercommutators. of that element.

3. The Morita invariance

We shall simply give the definition of the Morita equivalence here. For a de-

tailed approach, see for, instance, the book of Bass ([1]). The definition is completely

analogous to that from the ungraded case.

Definition 1. If A and B are two unital, associative superalgebras over a graded

commutative superring R, then A and B are said to be Morita equivalent if there

exists an A − B-bimodule P and a B − A-bimodule Q such that P ⊗B Q ' A (as

A − A-bimodules), while Q ⊗A P ' B (as B − B-bimodulea). The tensor products

should be taken in the graded sense.

Theorem 1. Let R be a commutative superring and A and B – two unital R-

superalgebras (not necessarily commutative). Let, also, P be an A−B-bimodule which

is projective over both rings and Q – an arbitrary B −A-bimodule. Then there is an

isomorphism

F∗ : H∗(A,P ⊗B Q) → H∗(B,Q⊗A P ),

which is functorial in the 4-tuple (A,B;P,Q).

Before actually proving the theorem, let us, first, prove a technical lemma.

Lemma 1. Let A be a unital, associative superalgebra over a commutative superring.

If M is an arbitrary left A-module, while Q is a projective right A-module, then

Hn(A,M ⊗Q) =

Q⊗A M if n = 0

0 if n ≥ 1
.
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Dually, if N is a right A-module, while P is a projective left A-module, then

Hn(A,P ⊗N) =

N ⊗A P if n = 0

0 if n ≥ 1
.

Proof. We shall assume, first, that Q = A, which is, clearly, projective, when regarded

as right A-module. Moreover, in this case we have A⊗A M ∼= M , so what we have to

prove is that

Hn(A,M ⊗A) =

M if n = 0

0 if n ≥ 1
.

It is easily seen, however, that the standard complex for computing the Hochschild

homology of A with coefficients in the module M⊗A is, essentially, the (unnormalized)

bar resolution β of the M , which has non-vanishing homology only in degree zero and

the zero degree homology is M .

To prove now the general case, take Q an arbitrary projective right A-module.

Then the functor Q⊗A − is exact and the result follows from the isomorphism (M ⊗

Q)⊗An ∼= Q⊗A (M ⊗A⊗An) established by the maps

f : (M ⊗Q)⊗An → Q⊗A (M ⊗A⊗An),

f((m⊗ q)⊗ (a1 ⊗ · · · ⊗ an)) = (−1)|m||q|q ⊗ (m⊗ 1⊗ a1 ⊗ · · · ⊗ an)

and

g : Q⊗A (M ⊗An+1) → (M ⊗Q)⊗An,

g(q ⊗ (m⊗ a0 ⊗ · · · ⊗ an)) = (−1)|m||q|(m⊗ q)⊗ a0a1 ⊗ a2 ⊗ · · · ⊗ an.

The proof of the second part of the lemma is completely similar.

Proof of the theorem 1. We consider the following family of modules and maps:

(Cp,q, d
′, d′′), where

Cm,n = P ⊗Bn ⊗Q⊗Am,

where

Bn = B ⊗B ⊗ · · · ⊗B︸ ︷︷ ︸
n factors
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and

Am = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
m factors

,

and all the tensor products are considered over the ground superring R. Before

defining the maps d′ and d′′, several remarks are in order.

First of all, it is very clear that

Cm,n = Cm(A,P ⊗Bn ⊗Q),

i.e. Cm,n is the group of the Hochschild m-chains of the superalgebra A, with the

coefficients in the A-bimodule P ⊗ Bn ⊗ Q. On the other hand, up to a cyclic

permutation of the factors in the tensor product, Cm,n is, also, the group of the

Hochschild n-chains of the superalgebra B with coefficients in a B − B-bimodule.

More specifically, we have

Cm,n = ωm+1,n+1 (Cn(B,Q⊗Am ⊗ P )) ,

where ωm+1,n+1 : Q⊗ Am ⊗ P ⊗ Bn → P ⊗ Bn ⊗Q⊗ Am is the cyclic permutation

of factors given by

ωm+1,n+1(p⊗ b1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am) =

= (−1)
|p|+|q|+

m∑
i=1

|ai|+
n∑

j=1
|bj |

q ⊗ a1 ⊗ · · · ⊗ am ⊗ p⊗ b1 ⊗ · · · ⊗ bn.

Now we can use the Hochschild differentials to build the maps d′ and d′′. Let m,n ∈ N

two given natural numbers. We define now, for any pair of natural numbers, m,n ∈ N,

d′m,n : Cm,n → Cm−1,n to be the Hochschild differential for A, with coefficients in

P ⊗ Bn ⊗ Q. Thus, on the columns we have Hochschild complexes. On the other

hand, also for any pair of natural numbers m,n we define the horizontal differentials

d′′m,n : Cm,n → Cm,n−1,

d′′m,n = (−1)mbm,n ◦ ωm+1,n+1,

where bm,n : Cn(B,Q⊗Am⊗P ) → Cn−1(B,Q⊗Am⊗P ) is the Hochschild differential.

From the construction, it is obvious that both d′ and d′′ are differentials. We will
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prove now that they anticommute. We have

d′′d′(p⊗ b1⊗· · ·⊗ bn⊗ q⊗a1⊗· · ·⊗an) = d′′
(

p⊗ b1⊗· · ·⊗ bn⊗ qa1⊗a2⊗· · ·⊗am+

+
m−1∑
i=1

(−1)ip⊗ b1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)

amp⊗ b1 ⊗ · · · ⊗ bn ⊗ q⊗ a + 1⊗ · · · ⊗ am−1

)
=

= (−1)m

[
pb1 ⊗ · · · ⊗ bn ⊗ qa1 ⊗ a2 ⊗ · · · ⊗ am+

+
n−1∑
j=1

p⊗ b1 ⊗ · · · ⊗ bjbj+1 ⊗ · · · ⊗ bn ⊗ qa1 ⊗ a2 ⊗ · · · ⊗ am+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

p⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ bnqa1 ⊗ a2 ⊗ · · · ⊗ am+

+
m−1∑
i=1

(−1)i

(
pb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ . . . aiai+1 ⊗ · · · ⊗ am+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

p⊗b1⊗· · ·⊗bn−1⊗bnq⊗a1⊗· · ·⊗aiai+1⊗· · ·⊗am

)

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)(

ampb1 ⊗ b1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am−1+

+
n−1∑
j=1

(−1)jamp⊗ b1 ⊗ . . . bjbj+1 ⊗ . . . bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am−1+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

amp⊗ b1 ⊗ bn−1 ⊗ bnq ⊗ a1 ⊗ · · · ⊗ am−1

)]
.

On the other hand,

d′d′′(p⊗b1⊗. . . bn⊗q⊗a1⊗· · ·⊗am) = (−1)m−1d′
(

pb1⊗b2⊗· · ·⊗bn⊗q⊗a1⊗· · ·⊗am+

+
n−1∑
i=1

(−1)ip⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

p⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ bnq ⊗ a1 ⊗ · · · ⊗ am

)
=
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= (−1)m−1

[
pb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ qa1 ⊗ a2 ⊗ · · · ⊗ am+

+
m−1∑
j=1

(−1)jpb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ a⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
k=1

|ak|+
n∑

k=1
|bk|
)

ampb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am+

+
n−1∑
i=1

(−1)i

(
p⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am+

+
∑
j=1

(−1)jp⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)
amp⊗b1⊗· · ·⊗bibi+1⊗· · ·⊗bn⊗q⊗a1⊗· · ·⊗am−1

)

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)(

p⊗ b1 ⊗ . . . bn−1 ⊗ bnqa1 ⊗ a2 ⊗ · · · ⊗ am+

+
m−1∑
j=1

(−1)jp⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ bnq ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)

amp⊗ b1⊗· · ·⊗ bn−1⊗ bnq⊗a1⊗· · ·⊗am−1

)]
.

An inspection shows immediately that the quantities between the square

brackets in the expressions of d′d′′ and d′′d′ coincide, while the signs in front of

these brackets are opposite, which means that we have

d′d′′ + d′′d′ = 0.

Thus, as we saw previously that d′
2 = d′′

2 = 0, it follows that the family of modules

and morphisms (Cm,n, d′, d′′)m,n∈N is a double complex of modules. We consider now

its total complex, given, for any n ≥ 0, by

Totn =
⊕

p+q=n

Cp,q

and

dn : Totn → Totn−1, , dn =
∑

p+q=n

(d′p,q + d′′p,q).
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As it is well-known (see [3], from where the notations, classical, in fact, are taken),

the total complex has two canonical filtrations (a horizontal and a vertical one) and to

each of this filtration we can associate a spectral sequence. The two spectral sequences

both converge to the homology of the total sequence. We shall show that in our case

both spectral sequences collapse at the second step. In fact, the second order terms

of the two sequences are

IE2
p,q = H ′

pH
′′
p,q(C)

and

IIE2
p,q = H ′′

p H ′
q,p(C).

In our particular case, due to the particular form of the vertical and horizontal com-

plexes, we get

H ′′
p,q(C) = Hq(B,Q⊗Ap ⊗ P ) (6)

and

H ′
q,p(C) = Hq(A,P ⊗Bp ⊗Q). (7)

As P is a bimodule which is projective at both sides, applying the previous lemma,

we can write

H ′′
p,q(C) =

P ⊗B Q⊗Ap for q = 0

0 for q ≥ 1

H ′
q,p(C) =

Bp ⊗A Q⊗ P for q = 0

0 for q ≥ 1

As a consequence, we obtain for the second terms of the two spectral sequences:

IE2
p,q =

Hp(A,P ⊗B Q) for q = 0

0 for q ≥ 1

IIE2
p,q =

Hp(B,Q⊗A P ) for q = 0

0 for q ≥ 1
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Since, as we see, the two spectral sequences collapse, their limits coincide, in fact,

with the second terms. Therefore, as they should converge to the same limit (the

homology of the total complex), we have, in particular, that, for any n ≥ 0, we should

have
IE2

n,0 =II E2
n,0,

i.e.

Hn(A,P ⊗B Q) = Hn(B,Q⊗A P )

which concludes the proof (the functoriality follows from the way we constructed the

double complex).

Corollary. If A and B are Morita equivalent superalgebras, then they have isomorphic

Hochschild homologies.
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