BOOLEAN SHEPARD INTERPOLATION

MARIUS M. BIROU, AND CRISTINA O. OŞAN

Abstract. Using Shepard univariate interpolation projectors which form the chains and boolean methods we construct Biermann-Shepard projector. We study the approximation order of Biermann-Shepard operator for two particular cases. The convergence of this operator is mark out by graphs and numerical examples.

1. Preliminaries

Let X, Y be the linear spaces on \mathbb{R} or \mathbb{C} .

The linear operator P defined on space X is called projector if $P^2 = P$.

The operator $P^C = I - P$, where I is identity operator, is called the remainder projector of P.

The set of interpolation points of projector P is denoted by $\mathcal{P}(P)$. If P, Q are commutative projectors then we have

$$\mathcal{P}(P \oplus Q) = \mathcal{P}(P) \cup \mathcal{P}(Q) \tag{1}$$

If P_1 , P_2 are projectors on space X, we define relation " \leq ":

$$P_1 \le P_2 \Leftrightarrow P_1 P_2 = P_1 \tag{2}$$

Let be $f \in \mathcal{C}(X \times Y)$ and $x \in X$. We define $f^x \in \mathcal{C}(Y)$ by

$$f^x(t) = f(x,t) , t \in Y$$

Received by the editors: 28.09.2005.

 $2000\ Mathematics\ Subject\ Classification.\ 41\,A05,\ 41\,A25,\ 41\,A63.$

Key words and phrases. bivariate approximation, Shepard univariate projectors, boolean methods, approximation order.

This work has been supported by MEdC-ANCS under grant ET 3323/17.10.2005

For $y \in Y$ we define ${}^{y}f \in C(X)$ by

$$^{y}f(s) = f(s,y)$$
, $s \in X$

Let P be a linear and bounded operator on C(X). The parametric extension P' of P is defined by

$$(P'f)(x,y) = (P^y f)(x) \tag{3}$$

If Q is a linear and bounded operator on C(Y), then the parametric extension Q'' of Q is defined by

$$(Q''f)(x,y) = (Qf^x)(y) \tag{4}$$

Proposition 1. Let $r \in \mathbb{N}$, P_1, \ldots, P_r univariate interpolation projectors on C(X) and Q_1, \ldots, Q_r univariate interpolation projectors on C(Y). Let $P'_1, \ldots, P'_r, Q''_1, \ldots, Q''_r$ be the corresponding parametric extension. We assume that

$$P_1 \le P_2 \le \dots \le P_r, \ Q_1 \le Q_2 \le \dots \le Q_r \tag{5}$$

Then

$$B_r = P_1' Q_r'' \oplus P_2' Q_{r-1}'' \oplus \dots \oplus P_r' Q_1''$$
(6)

is projector and it has representation

$$B_r = \sum_{m=1}^r P'_m Q''_{r+1-m} - \sum_{m=1}^{r-1} P'_m Q''_{r-m}$$
 (7)

Moreover, we have

$$B_r^C = P_r^{\prime C} + P_{r-1}^{\prime C} Q_1^{\prime \prime C} + \dots + P_1^{\prime C} Q_{r-1}^{\prime \prime C} + Q_r^{\prime \prime C} - (P_r^{\prime C} Q_1^{\prime \prime C} + \dots + P_1^{\prime C} Q_r^{\prime \prime C})$$
(8)

where $P^C = I - P$, I is identity operator.

For the proof of this proposition see [3].

Remark 2. If P_1, \ldots, P_r and Q_1, \ldots, Q_r are Lagrange univariate operators which form the chains (i.e. satisfy the relation (5)) the operator B_r given by (6) is called Biermann interpolation projectors. In this article, we instead the Lagrange univariate operators by Shepard univariate operators.

2. Main result

Let be the univariate interpolation projectors of Shepard type $P_1, \ldots, P_r, Q_1, \ldots, Q_r$ which are given by relations

$$(P_m f)(x) = \sum_{i=1}^{k_m} A_{i,m}(x) f(x_i), \ 1 \le m \le r$$

$$(Q_n g)(y) = \sum_{j=1}^{l_n} \widetilde{A}_{j,n}(y) g(y_j), \ 1 \le n \le r$$
(9)

The interpolation points satisfy

$$\{x_1, \ldots, x_{k_m}\} \subseteq [a, b] \text{ and } \{y_1, \ldots, y_{l_n}\} \subseteq [c, d]$$

with

$$1 \le k_1 < k_2 < \dots < k_r \text{ and } 1 \le l_1 < l_2 < \dots < l_r$$
 (10)

The cardinal functions are given by

$$A_{i,m}(x) = \frac{|x - x_i|^{-\mu}}{\sum_{k=1, k \neq i}^{k_m} |x - x_k|^{-\mu}}, \ 1 \le i \le k_m$$

$$\widetilde{A}_{j,n}(y) = \frac{|y - y_j|^{-\mu}}{\sum_{l=1, l \neq j}^{l_n} |y - y_l|^{-\mu}}, \ 1 \le j \le l_n$$
(11)

with $\mu \in \mathbb{R}$ and satisfy the relations

$$A_{i,m}(x_{\nu}) = \delta_{i\nu}, i, \nu = \overline{1, k_m}$$
$$\widetilde{A}_{j,n}(y_{\sigma}) = \delta_{j\sigma}, j, \sigma = \overline{1, l_n}$$

and

$$\sum_{i=1}^{k_m} A_{i,m}(x) = 1$$

$$\sum_{i=1}^{l_n} \widetilde{A}_{j,n}(y) = 1$$

Theorem 3. The parametric extensions

$$P'_1, \dots, P'_r, \ Q''_1, \dots, Q''_r$$

are bivariate interpolation projectors which form the chains

$$P_1' \le P_2' \le \dots \le P_r', \ Q_1'' \le Q_2'' \le \dots \le Q_r''$$
 (12)

Proof. Let be $1 \leq m_1 \leq m_2 \leq r$. From (10) we have

$$k_{m_1} \le k_{m_2} \tag{13}$$

We have that

$$(P'_{m_1}P'_{m_2}f)(x,y) = \sum_{i_1=1}^{k_{m_1}} A_{i_1,m_1}(x) \sum_{i_2=1}^{k_{m_2}} A_{i_2,m_2}(x_{i_1}) f(x_{i_2},y)$$
(14)

But

$$A_{i_2,m_2}(x_{i_1}) = \delta_{i_2,i_1} \tag{15}$$

From (13), (14) and (15) we have that

$$(P'_{m_1}P'_{m_2}f)(x,y) = \sum_{i_1=1}^{k_{m_1}} A_{i_1,m_1}(x)f(x_{i_1},y) = (P'_{m_1}f)(x,y)$$

i.e. $P'_{m_1} \leq P'_{m_2}$. Thus the projectors P'_1, \ldots, P'_r form the chain. Analogous $Q''_1, Q''_2, \ldots, Q''_r$ are projectors which form a chain.

We have that

$$P'_{m}Q''_{n} = Q''_{n}P'_{m}, 1 \le m, n \le r$$

and the tensor product projector has the representation:

$$(P'_{m}Q''_{n}f)(x,y) = \sum_{i=1}^{k_{m}} \sum_{j=1}^{l_{n}} A_{i,m}(x)\widetilde{A}_{j,n}(y)f(x_{i},y_{j})$$

with interpolation properties

$$(P'_{m}Q''_{n}f)(x_{i}, y_{i}) = f(x_{i}, y_{i}), 1 \le i \le k_{m}, 1 \le j \le l_{n}$$

The projectors $P'_1, \ldots, P'_r, \ Q''_1, \ldots, Q''_r$ generate a distributive lattice of projectors on $C([a,b]\times [c,d])$. A special element in this lattice is

$$B_r^S = P_1' Q_r'' \oplus P_2' Q_{r-1}'' \oplus \dots \oplus P_r' Q_1'', r \in \mathbb{N}$$
 (16)

called Biermann-Shepard projector and which has the interpolation properties

$$(B_r^S f)(x_i, y_i) = f(x_i, y_i), 1 \le i \le k_m, 1 \le j \le l_{r+1-m}, 1 \le m \le r$$

The set of interpolation points of the Biermann-Shepard projector given by (16) has the disjoint representation

$$\mathcal{P}(B_r^S) = \bigcup_{m=1}^r \bigcup_{n=0}^{r-m} \{(x_i, y_j) : k_{m-1} < i < k_m, l_{r-m-n} < j \le l_{r-m-n+1}\}$$
 (17)

with $k_0 = 0$, $l_0 = 0$. The number of interpolation points of Biermann-Shepard operator B_r^S given by (16) is

$$|\mathcal{P}(B_r^S)| = \sum_{m=1}^r k_m (l_{r+1-m} - l_{r-m})$$

with $l_0 = 0$.

Using the disjoint representation (17) of interpolation set we obtain the Lagrange representation of Biermann-Shepard interpolant

$$B_r(f) = \sum_{m=1}^r \sum_{n=0}^{r-m} \sum_{i=1+k_{m-1}}^{k_m} \sum_{j=1+l_{r-m-n}}^{l_{r+1-m-n}} f(x_i, y_j) S_{ij}$$
(18)

 $\label{eq:cardinal functions} The cardinal functions of Biermann-Shepard interpolation projector are given by$

$$S_{ij}(x,y) = \sum_{s=m}^{m+n} A_{i,s}(x)\widetilde{A}_{j,r+1-s}(y) - \sum_{s=m}^{m+n-1} A_{i,S}(x)\widetilde{A}_{j,r-s}(y),$$
(19)

with $k_{m-1} \le i \le k_m$, $l_{r-m-n} \le j \le l_{r+1-m-n}$, $0 \le n \le r-m$, $1 \le m \le r$.

For the remainder term we can use formula (8) and integral representation of remainder [1]

$$(P_m^C f)(x) = \int_a^b \varphi_m(x, s) f'(s) ds$$

$$(Q_n^C g)(y) = \int_a^d \psi_n(t, y) g'(t) dt$$
(20)

where

$$\varphi_m(x,s) = (x-s)_+^0 - \sum_{i=1}^{k_m} A_{i,m}(x)(x_i - s)_+^0$$
$$\psi_n(y,t) = (y-t)_+^0 - \sum_{j=1}^{l_n} \widetilde{A}_{j,n}(y)(y_j - t)_+^0$$

Also

$$\left| (P_m^C f)(x) \right| \le H_m(x) M_1 f$$
$$\left| (Q_n^C g)(y) \right| \le K_n(y) M_1 g$$

where

$$H_m(x) = x - \sum_{i=1}^{k_m} x_i A_i(x) + 2 \sum_{i=1}^{k_m} A_i(x) (x_i - x)_+$$

$$K_n(y) = y - \sum_{j=1}^{l_n} y_j \widetilde{A_j}(y) + 2 \sum_{j=1}^{l_n} \widetilde{A_j}(y) (y_j - y)_+$$

$$M_1 f = \sup_{a \le x \le b} |f'(x)|$$

$$M_1 g = \sup_{c \le y \le d} |g'(y)|$$

If $f \in C^{1,1}([a,b] \times [c,d])$ we have the following estimation for remainder term of Biermann-Shepard interpolant

$$|f(x,y) - B_r^S f(x,y)| \le H_r(x) \|f^{(1,0)}\| + K_r(y) \|f^{(0,1)}\| + \sum_{i=1}^{r-1} H_{r-i}(x) K_i(y) \|f^{(1,1)}\|$$

$$+ \sum_{i=1}^r H_{r+1-i}(x) K_i(y) \|f^{(1,1)}\|$$

where $||f^{(i,j)}|| = \max_{(x,y) \in [a,b] \times [c,d]} |f^{(i,j)}(x,y)|.$

3. Examples

Using relations (8) we determine the approximation order of Biermann-Shepard projector (16) for two particular case.

Example 1

Let be

$$k_m = 2^m + 1, \ 1 \le m \le r$$

 $l_n = 2^n + 1, \ 1 \le n \le r$

and the univariate Shepard interpolation projectors on [0, 1] with equidistant nodes

$$(P_m f)(x) = (S_{2^m,\mu} f)(x) = \frac{\sum_{k=0}^{2^m} f(\frac{k}{2^m}) \left| x - \frac{k}{2^m} \right|^{-\mu}}{\sum_{k=0}^{2^m} \left| x - \frac{k}{2^m} \right|^{-\mu}}, \ 1 \le m \le r$$

$$(Q_n g)(y) = (S_{2^n,\mu} g)(y) = \frac{\sum_{j=0}^{2^n} g(\frac{j}{2^n}) \left| y - \frac{j}{2^n} \right|^{-\mu}}{\sum_{j=0}^{2^n} \left| y - \frac{j}{2^n} \right|^{-\mu}}, 1 \le n \le r$$

$$(21)$$

We have that the extension projectors form the chains

$$P_1' \le P_2' \le \dots \le P_r', Q_1'' \le Q_2'' \le \dots \le Q_r''$$

and we can define the Biermann-Shepard operator

$$B_r^S = P_1' Q_r'' \oplus P_2' Q_{r-1}'' \oplus \dots \oplus P_r' Q_1''$$
(22)

From [5], if ${}^{y}f \in Lip_{[0,1]}1$, we have that

$$\|yf - (S_{2^{m},\mu}yf)\| = \begin{cases} O(\frac{1}{2^{m}}) & \mu > 2\\ O(\frac{m}{2^{m}}) & \mu = 2\\ O(\frac{m}{2^{m}(\mu-1)}) & \mu \in (1,2)\\ O(\frac{1}{m}) & \mu = 1 \end{cases}$$
 (23)

If $f^x \in Lip_{[0,1]}1$ we obtain a analogous estimation for $||f^x - S_{2^n,\mu}f^x||$.

Theorem 4. If $f \in Lip_{[0,1]}1 \times Lip_{[0,1]}1$, the approximation orders of the B_r^S interpolant given by (22) are

$$||f - B_r^S f|| = \begin{cases} O(\frac{r}{2^r}) &, & \mu > 2\\ O(\frac{r^3}{2^r}) &, & \mu = 2\\ O(\frac{r^3}{2^{r(\mu - 1)}}) &, & \mu \in (1, 2)\\ O(\frac{1}{r}) &, & \mu = 1 \end{cases}$$

Proof. From (8) we have

$$(B_r^S)^C = (S'_{2^r,\mu})^C + (S''_{2^r,\mu})^C +$$

$$+ \sum_{m=1}^{r-1} (S'_{2^{r-m},\mu})^C (S''_{2^m,\mu})^C - \sum_{m=1}^r (S'_{2^{r+1-m},\mu})^C (S''_{2^m,\mu})^C$$

Taking into account (23) on obtain

• in the case $\mu > 2$

$$\begin{split} \left\| (B_r^S f)^C \right\| & \leq \frac{c}{2^r} + \frac{c}{2^r} + \sum_{m=1}^{r-1} \frac{c}{2^{r-m}} \cdot \frac{c}{2^m} + \sum_{m=1}^r \frac{c}{2^{r+1-m}} \cdot \frac{c}{2^m} = \\ & = O(\frac{r}{2^r}). \end{split}$$

• in the case $\mu = 2$

$$\begin{aligned} \left\| (B_r^S f)^C \right\| & \leq c \frac{r}{2^r} + c \frac{r}{2^r} + \sum_{m=1}^{r-1} \frac{c(r-m)}{2^{r-m}} \cdot \frac{cm}{2^m} + \sum_{m=1}^r \frac{c(r+1-m)}{2^{r+1-m}} \cdot \frac{cm}{2^m} = \\ & = O(\frac{r^3}{2^r}). \end{aligned}$$

• in the case $\mu \in (1,2)$

$$\begin{split} \left\| (B_r^S f)^C \right\| & \leq c \frac{r}{2^{r(\mu - 1)}} + c \frac{r}{2^{r(\mu - 1)}} + \sum_{m = 1}^{r - 1} \frac{c(r - m)}{2^{(r - m)(\mu - 1)}} \cdot \frac{cm}{2^{m(\mu - 1)}} + \\ & + \sum_{m = 1}^r \frac{c(r + 1 - m)}{2^{(r + 1 - m)(\mu - 1)}} \cdot \frac{cm}{2^{m(\mu - 1)}} \\ & = O(\frac{r^3}{2^{r(\mu - 1)}}). \end{split}$$

• in the case $\mu = 1$

$$\|(B_r^S f)^C\| \leq \frac{c}{r} + \frac{c}{r} + \sum_{m=1}^{r-1} \frac{c}{r-m} \cdot \frac{c}{m} + \sum_{m=1}^{r} \frac{c}{r+1-m} \cdot \frac{c}{m} = O(\frac{1}{r}).$$

In Figure 1 we approximate the functions $f:[0,1]\times[0,1]\to R$ $f(x,y)=\frac{1}{1+x+y}$ by B_r^S for $\mu=4$ and r=2,3,4.

BOOLEAN SHEPARD INTERPOLATION

FIGURE 1. The graph of function f(x,y)=1/(1+x+y) and the graphs of B_r^S for $\mu=4$ and r=2,3,4

We have the estimations

r	$\left\ f - B_r^S f \right\ $	$\left \mathcal{P}(B_r^S f)\right $
2	0.0998	21
3	0.0531	49
4	0.0295	113
5	0.0167	257

Remark 5. Under stronger restrictions on f, see [5], [6]

$$f^{(1,0)}(0,y) = f^{(1,0)}(1,y), y \in [0,1]$$

$$f^{(0,1)}(x,0) = f^{(0,1)}(x,1), x \in [0,1]$$

$$f \in C^{1,1}([0,1] \times [0,1])$$
(24)

we have

$$||^{y}f - (S_{2^{m},2}{}^{y}f)|| = O(\frac{1}{2^{m}})$$
$$||f^{x} - S_{2^{n},2}f^{x})|| = O(\frac{1}{2^{n}})$$

which implies

$$||f - B_r^S f|| = O(\frac{r}{2r}), \text{ for } \mu = 2$$
 (25)

Remark 6. The approximation orders of product operator $S'_{2^r,\mu}S''_{2^r,\mu}$ are

$$||f - (S'_{2r,\mu}S''_{2r,\mu}f)|| = \begin{cases} O(\frac{1}{2^r}) & \mu > 2\\ O(\frac{r}{2^r}) & \mu = 2\\ O(\frac{r}{2^{r(\mu-1)}}) & \mu \in (1,2)\\ O(\frac{1}{r}) & \mu = 1 \end{cases}$$

But,

$$|\mathcal{P}(B_r^S)| = 2^r(r+3) + 1$$

 $|\mathcal{P}(S_{2^r,\mu}''S_{2^r,\mu}'')| = (2^r+1)^2$

It follows the Biermann-Shepard operators B_r^S is more efficient that operator $S'_{2r,\mu}S''_{2r,\mu}$.

Example 2

Let be r=2 and

$$k_1 = N + 1, k_2 = N^2 + 1$$

 $l_1 = N + 1, l_2 = N^2 + 1$

and the univariate Shepard interpolation projectors on [0, 1] with equidistant nodes

$$(P_m f)(x) = (S_{N^m,\mu} f)(x) = \frac{\sum_{k=0}^{N^m} f(\frac{k}{N^m}) \left| x - \frac{k}{N^m} \right|^{-\mu}}{\sum_{k=0}^{N^m} \left| x - \frac{k}{N^m} \right|^{-\mu}}, m = 1, 2$$

$$(Q_n g)(y) = (S_{N^n,\mu} g)(y) = \frac{\sum_{j=0}^{N^n} g(\frac{j}{N^n}) \left| y - \frac{j}{N^n} \right|^{-\mu}}{\sum_{j=0}^{N^n} \left| y - \frac{j}{N^n} \right|^{-\mu}}, n = 1, 2$$

$$(26)$$

The Biermann-Shepard interpolation projector is given by

$$B_2^S = P_1' Q_2'' \oplus P_2' Q_1'' \tag{27}$$

If ${}^{y}f \in Lip_{[0,1]}1$, we have that (from [5])

$$\|yf - (S_{N^m,\mu}yf)\| = \begin{cases} O(\frac{1}{N^m}) & \mu > 2\\ O(\frac{\log N}{N^m}) & \mu = 2\\ O(\frac{1}{N^m(\mu-1)}) & \mu \in (1,2) \end{cases} m = 1.2$$

$$O(\frac{1}{\log N}) \qquad \mu = 1$$
(28)

If $f^x \in Lip_{[0,1]}1$ we obtain a analogous estimation for $||f^x - S_{N^m,\mu}f^x||$.

Theorem 7. If $f \in Lip_{[0,1]}1 \times Lip_{[0,1]}1$, the approximation orders of the B_2^S interpolant given by (27) are

$$||f - B_2^S f|| = \begin{cases} O(\frac{1}{N^2}) & \mu > 2\\ O(\frac{\log^2 N}{N^2}) & \mu = 2\\ O(\frac{1}{N^{2(\mu - 1)}}) & \mu \in (1, 2)\\ O(\frac{1}{\log N}) & \mu = 1 \end{cases}$$

Proof. From (8) we have

$$(B_2^S)^C = (S'_{N^2,\mu})^C + (S''_{N^2,\mu})^C + (S'_{N,\mu})^C (S''_{N,\mu})^C$$
$$-(S'_{N^2,\mu})^C (S''_{N,\mu})^C - (S'_{N,\mu})^C (S''_{N^2,\mu})^C$$

Taking into account (28) on obtain

• in the case $\mu > 2$

$$\|(B_2^S f)^C f\| \le \frac{c}{N^2} + \frac{c}{N^2} + \frac{c}{N} \cdot \frac{c}{N} + \frac{c}{N^2} \cdot \frac{c}{N} + \frac{c}{N} \cdot \frac{c}{N^2} = O(\frac{1}{N^2})$$

• in the case $\mu = 2$

$$\begin{split} \left\| (B_2^S f)^C f \right\| & \leq c \frac{\log N}{N^2} + c \frac{\log N}{N^2} + c \frac{\log N}{N} \cdot c \frac{\log N}{N} + \\ & + c \frac{\log N}{N^2} \cdot c \frac{\log N}{N} + c \frac{\log N}{N} \cdot c \frac{\log N}{N^2} \\ & = O(\frac{\log^2 N}{N^2}) \end{split}$$

• in the case $\mu \in (1,2)$

$$\begin{split} \left\| (B_2^S f)^C f \right\| & \leq & \frac{c}{N^{2(\mu-1)}} + \frac{c}{N^{2(\mu-1)}} + \frac{c}{N^{(\mu-1)}} \cdot \frac{c}{N^{(\mu-1)}} + \\ & + \frac{c}{N^{2(\mu-1)}} \cdot \frac{c}{N^{(\mu-1)}} + \frac{c}{N^{(\mu-1)}} \cdot \frac{c}{N^{2(\mu-1)}} \\ & = & O(\frac{1}{N^{2(\mu-1)}}) \end{split}$$

• in the case $\mu = 1$

$$\begin{split} \left\| (B_2^S f)^C f \right\| & \leq & \frac{c}{\log N} + \frac{c}{\log N} + \frac{c}{\log N} \cdot \frac{c}{\log N} + \\ & + \frac{c}{\log N} \cdot \frac{c}{\log N} + \frac{c}{\log N} \cdot \frac{c}{\log N} \\ & = & O(\frac{c}{\log N}) \end{split}$$

In Figure 2 we approximate the functions $f:[0,1]\times[0,1]\to R$ $f(x,y)=\frac{1}{1+x+y}$ by B_2^S for $\mu=4$ and N=2,3,4.

We have the following estimations

N	$\left\ f-B_2^Sf\right\ $	$\left \mathcal{P}(B_2^Sf) ight $
2	0.0998	21
3	0.0365	64
4	0.0283	145
5	0.0135	276

FIGURE 2. The graph of function f(x,y)=1/(1+x+y) and the graphs of B_2^S for $\mu=4$ and N=2,3,4

Remark 8. Under the same stronger restrictions on f given by (24) we have that

$$||^{y} f - (S_{N^{m},2}{}^{y} f)|| = O(\frac{1}{N^{m}})$$
$$||f^{x} - (S_{N^{n},2} f^{x})|| = O(\frac{1}{N^{n}})$$

which implies

$$||f - B_2^S f|| = O(\frac{1}{N^2}), \text{ for } \mu = 2.$$
 (29)

Remark 9. The approximation orders of operator $S'_{N^2}S''_{N^2}$ are

$$||f - (S'_{N^2} S''_{N^2} f)|| = \begin{cases} O(\frac{1}{N^2}) & \mu > 2\\ O(\frac{\log N}{N^2}) & \mu = 2\\ O(\frac{1}{N^2(\mu - 1)}) & \mu \in (1, 2)\\ O(\frac{1}{\log N}) & \mu = 1 \end{cases}$$
(30)

But,

$$\left| \mathcal{P}(S'_{N,\mu}S''_{N^2,\mu} \oplus S'_{N^2,\mu}S''_{N,\mu}) \right| = 2N^3 + N^2 + 1$$
$$\left| \mathcal{P}(S'_{N^2,\mu}S''_{N^2,\mu}) \right| = (N^2 + 1)^2$$

It follows that the Biermann-Shepard operator B_r^S given by (27) is more efficient that operator $S_{N^2}'S_{N^2}''$.

References

- [1] Coman, Gh., The remainder of certain Shepard type interpolation formulas, Studia Univ. "Babeş-Bolyai" Mathematica, XXXII, 4(1987), 24-32.
- [2] Delvos, F.-S., Posdorf, H., Generalized Biermann interpolation, Resultate Math, 5(1982), no.1, 6-18.
- [3] Delvos, F.-S., Schempp, W., Boolean methods in interpolation and approximation, Pitman Research Notes in Mathematics, serie 230, New York, 1989.
- [4] Gordon, W.J., Hall C.A., Transfinite element methods blending functions interpolation over arbitrary curved element domains, Numer. Math., 21(1973/1974), 109-129.
- [5] Szabados, J., Direct and converse approximation theorems for the Shepard operators, J. Approx. Theory and Appl. 7(1991), 63-76.
- [6] Vecchia Della, B., Mastroianni, G., Totik, V., Saturation of Shepard operators, J. Approx. Theory and Appl., 6(1990), 76-84.
- [7] Vecchia Della, B., Mastroianni, G., On function approximation by Shepard type operators a survey, Approximation theory, wavelets and applications, Maratea, 1994, (Dordrecht), Ser. C, Math. Phys. Sci., vol. 454, NATO Adv. Sci. Inst., Kluwer Acad. Publ., 1995, 335-346.

Babeş-Bolyai University, Kogălniceanu 1, Cluj-Napoca, Romania E-mail address: mariusbirou@yahoo.com