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APPROXIMATE FIXED POINT THEOREMS

MĂDĂLINA BERINDE

Abstract. Two general lemmas are given regarding ε−fixed points of op-

erators on metric spaces. Using these results we prove qualitative and

quantitative theorems for various types of well known generalized contrac-

tions on metric spaces.

1. Introduction

There are plenty of problems in applied mathematics which can be solved

by means of fixed point theory. Still, practice proves that in many real situations

an approximate solution is more than sufficient, so the existence of fixed points is

not strictly required, but that of ”nearly” fixed points. Another type of practical

situations that lead to this approximation is when the conditions that have to be

imposed in order to guarantee the existence of fixed points are far too strong for the

real problem one has to solve.

It is then natural to introduce the concepts of ε−fixed point ( or approximate

fixed point), which is a ”nearly” fixed point, and that of function with the approximate

fixed point property and to formulate a proper theory regarding them.

In this paper, starting from the article of Tijs, Torre and Branzei [10], we

study some well known types of operators on metric spaces, and we give some quali-

tative and quantitative results regarding ε−fixed points of such operators.

We have to mention that we consider operators on metric spaces, not on

complete metric spaces, the usual framework for fixed point problems. Weakening
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MĂDĂLINA BERINDE

the conditions by giving up the completeness of the space we can still guarantee the

existence of ε−fixed points for various types of operators.

We begin with two lemmas. The first one is the qualitative result that indi-

cates under which conditions the operator f has the approximate fixed point property.

This will be used in order to prove all the results given in the second section. The

second lemma is the quantitative result which will be used in order to prove all the

results given in the third section.

Let (X, d) be a metric space.

Definition 1.1. Let f : X → X, ε > 0, x0 ∈ X. Then x0 is an ε−fixed point

(approximate fixed point) of f if

d(f(x0), x0) < ε.

Remark 1.1. As many authors we prefer the terminology with ε, as being more

suggestive throughout the paper.

Remark 1.2. In this paper we will denote the set of all ε−fixed points of f, for a

given ε, by:

Fε(f) = {x ∈ X | x is an ε− fixed point of f}.

Definition 1.2. Let f : X → X. Then f has the approximate fixed point prop-

erty (a.f.p.p.) if

∀ε > 0, Fε(f) 6= ∅.

The following result guarantees the existence of ε−fixed points for an operator

on a metric space.

Lemma 1.1. Let (X, d) be a metric space, f : X → X such that f is asymptotic

regular, i.e.,

d(fn(x), fn+1(x)) → 0 as n →∞, ∀x ∈ X.

Then f has the approximate fixed point property.

Proof. Let x0 ∈ X. Then:

d(fn(x0), fn+1(x0)) → 0 as n →∞ ⇔
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∀ε > 0, ∃n0(ε) ∈ N∗ such that ∀n ≥ n0(ε), d(fn(x0), fn+1(x0)) < ε ⇔

∀ε > 0, ∃n0(ε) ∈ N∗ such that ∀n ≥ n0(ε), d(fn(x0), f(fn(x0))) < ε .

Denoting

y0 = fn(x0),

it follows that:

∀ε > 0, ∃y0 ∈ X such that d(y0, f(y0)) < ε ,

so for each ε > 0 there exists an ε−fixed point of f in X, namely y0.

This means exactly that f has the approximate fixed point property.

Remark 1.3. The following result (see [5]) gives conditions under which the existence

of fixed points for a given mapping is equivalent to that of approximate fixed points.

Proposition.: Let A be a closed subset of a metric space (X, d) and f :

A → X a compact map. Then f has a fixed point if and only if it has the

approximate fixed point property.

In the following, by δ(A) for a set A 6= ∅ we will understand the diameter

of the set A, i.e.,

δ(A) = sup{d(x, y) | x, y ∈ A}.

Lemma 1.2. Let (X, d) be a metric space, f : X → X an operator and ε > 0. We

assume that:

ı): Fε(f) 6= ∅;

ıı): ∀η > 0, ∃ϕ(η) > 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η), ∀x, y ∈ Fε(f).

Then:

δ(Fε(f)) ≤ ϕ(2ε).

Proof. Let ε > 0 and x, y ∈ Fε(f). Then:

d(x, f(x)) < ε, d(y, f(y)) < ε.

We can write:

d(x, y) ≤ d(x, f(x)) + d(f(x), f(y)) + d(y, f(y)) ≤ d(f(x), f(y)) + 2ε
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⇒ d(x, y)− d(f(x), f(y)) ≤ 2ε.

Now by (ii) it follows that

d(x, y) ≤ ϕ(2ε),

so

δ(Fε(f)) ≤ ϕ(2ε).

Remark 1.4. Condition (i) in Lemma 1.2 can be replaced by the asymptotic regularity

condition, as, by Lemma 1.1, the latter ensures (i). So Lemma 1.2 can be given in

the form:

Lemma 1.3. Let (X, d) be a metric space and f : X → X such that for ε > 0 the

following hold:

ı): d(fn(x), fn+1(x)) → 0 as n →∞, ∀x ∈ X;

ıı): ∀η > 0, ∃ϕ(η) > 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η), ∀x, y ∈ Fε(f).

Then:

δ(Fε(f)) ≤ ϕ(2ε).

2. Qualitative results for operators on metric spaces

In this section we will formulate and prove, using Lemma 1.1, qualitative

results for various types of operators on a metric space, results that establish the

conditions under which the mappings considered have the approximate fixed point

property.

Let (X, d) be a metric space. Note that the completeness of the space is not

required, as in fixed point theorems.

Definition 2.1. ([8]) A mapping f : X → X is an a-contraction if

∃a ∈]0, 1[ such that d(f(x), f(y) ≤ ad(x, y), ∀x, y ∈ X.
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Theorem 2.1. Let (X, d) be a metric space and f : X → X an a-contraction.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let ε > 0, x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ ad(fn−1(x), fn(x)) ≤ ... ≤ and(x, f(x))

But a ∈]0, 1[ ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε(f) 6= ∅, ∀ε > 0.

Remark 2.1. Theorem 2.1 is a result presented and proved, by means of a different

method, in [10].

Any operator satisfying the condition in Definition 2.1 is Lipschitz and im-

plicitly continuous, which means a relatively small class of mappings. Still, the theory

of fixed points and consequently ε−fixed points deals also with non-continuous map-

pings. In 1968, Kannan (see [6],[2]) proved a fixed point theorem for operators which

need not be continuous, by considering the following contraction condition.

Definition 2.2. ([6],[8]) A mapping f : X → X is a Kannan operator if

∃a ∈]0,
1
2
[ such that d(f(x), f(y)) ≤ a[d(x, f(x)) + d(y, f(y))],∀x, y ∈ X.

Theorem 2.2. Let (X, d) be a metric space and f : X → X a Kannan operator.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let ε > 0 and x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ a[d(fn−1(x), f(fn−1(x))) + d(fn(x), f(fn(x)))] =

= ad(fn−1(x), fn(x)) + ad(fn(x), fn+1(x))
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⇒ (1− a)d(fn(x), fn+1(x)) ≤ ad(fn−1(x), fn(x)) ⇒

d(fn(x), fn+1(x)) ≤ a

1− a
d(fn−1(x), fn(x)) ≤ ... ≤ a1− and(x, f(x))

But a ∈]0, 1
2 [ ⇒ a

1− a
∈]0, 1[ ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma1.1 it follows that Fε(f) 6= ∅,∀ε > 0.

In 1972, Chatterjea considered another contraction condition, similar to that

of Kannan but independent of this one, and which again does not impose the conti-

nuity of the operator.

Definition 2.3. ([4],[8]) A mapping f : X → X is a Chatterjea operator if

∃a ∈]0,
1
2
[ such that d(f(x), f(y)) ≤ a[d(x, f(y)) + d(y, f(x))],∀x, y ∈ X.

Theorem 2.3. Let (X, d) be a metric space and f : X → X a Chatterjea operator.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let ε > 0 and x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ a[d(fn−1(x), f(fn(x))) + d(fn(x), f(fn−1(x)))] =

= a[d(fn−1(x), fn+1(x)) + d(fn(x), fn(x))] = ad(fn−1(x), fn+1(x))

On the other hand

d(fn−1(x), fn+1(x)) ≤ d(fn−1(x), fn(x)) + d(fn(x), fn+1(x)) ⇒

(1− a)d(fn(x), fn+1(x)) ≤ ad(fn−1(x), fn(x)) ⇒

d(fn(x), fn+1(x)) ≤ a

1− a
d(fn−1(x), fn(x)) ≤ ... ≤ a1− and(x, f(x)).

But a ∈]0, 1
2 [⇒ a

1− a
∈]0, 1[⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε 6= ∅,∀ε > 0.
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In 1972, by combining the three independent (see [7 ]) contraction conditions

above, Zamfirescu (see [11]) obtained another fixed point result for operators which

satisfy the following.

Definition 2.4. ([8],[11]) A mapping f : X → X is a Zamfirescu operator if

∃a, k, c ∈ R, a ∈ [0, 1[, k ∈ [0,
1
2
[, c ∈ [0,

1
2
[ such that

∀x, y ∈ X, at least one of the following is true:

ı): d(f(x), f(y)) ≤ ad(x, y);

ıı): d(f(x), f(y)) ≤ k[d(x, f(x)) + d(y, f(y))];

ııı): d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))].

Theorem 2.4. Let (X, d) be a metric space and f : X → X a Zamfirescu operator.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. First we will try to concentrate the three independent conditions into a single

one they all imply, see the proof of Zamfirescu’s fixed point theorem given in [3].

Let x, y ∈ X.

Supposing ıı) holds, we have that:

d(f(x), f(y)) ≤ k[d(x, f(x)) + d(y, f(y))] ≤

≤ kd(x, f(x)) + k[d(y, x) + d(x, f(x)) + d(f(x), f(y))] =

= 2kd(x, f(x)) + kd(x, y) + kd(f(x), f(y)) ⇒

d(f(x), f(y)) ≤ 2k

1− k
d(x, f(x)) +

k

1− k
d(x, y). (1)

Supposing ııı) holds, we have that:

d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))] ≤

≤ c[d(x, y) + d(y, f(y))] + c[d(y, f(y)) + d(f(y), f(x))] =

= cd(f(x), f(y)) + 2cd(y, f(y)) + cd(x, y) ⇒

d(f(x), f(y)) ≤ 2c

1− c
d(y, f(y)) +

c

1− c
d(x, y). (2a)
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Similarly:

d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))] ≤

≤ c[d(x, f(x)) + d(f(x), f(y))] + c[d(y, x) + d(x, f(x))] =

= cd(f(x), f(y)) + 2cd(x, f(x)) + cd(x, y) ⇒

d(f(x), f(y)) ≤ 2c

1− c
d(x, f(x)) +

c

1− c
d(x, y). (2b)

Now looking at ı), (1), (2a), (2b) we can denote:

δ = max{a,
k

1− k
,

c

1− c
},

and it is easy to see that δ ∈ [0, 1[.

For f satisfying at least one of the conditions ı), ıı), ııı) we have that

d(f(x), f(y)) ≤ 2δd(x, f(x)) + δd(x, y) (3a)

and d(f(x), f(y)) ≤ 2δd(y, f(y)) + δd(x, y) (3b)

hold.

Using these conditions implied by ı)− ııı) and taking x ∈ X, we have:

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x)))
(3a)

≤

≤ 2δd(fn−1(x), f(fn−1(x))) + δd(fn−1(x), fn(x)) = 3δd(fn−1(x), fn(x)) ⇒

d(fn(x), fn+1(x)) ≤ ... ≤ (3δ)nd(x, f(x)) ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε 6= ∅,∀ε > 0.

Remark 2.2. Theorems 2.1, 2.2, 2.3 are actually contained in Theorem 2.4, as any

a-contraction, Kannan operator or Chatterjea operator is also a Zamfirescu operator

(see Definitions 2.1, 2.2, 2.3, 2.4.).

If we go further generalizing, we may consider the contraction condition given

in 2004 by V. Berinde, who also formulated a corresponding fixed point theorem, see

[2], for example.
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Definition 2.5. A mapping f : X → X is a weak contraction if

∃a ∈]0, 1[ and L ≥ 0 such that d(f(x), f(y)) ≤ ad(x, y) + Ld(y, f(x)),∀x, y ∈ X.

Theorem 2.5. Let (X, d) be a metric space and f : X → X a weak contraction.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ ad(fn−1(x), fn(x)) + Ld(fn(x), fn(x)) =

= ad(fn−1(x), fn(x)) ≤ ... ≤ and(x, f(x))

But a ∈]0, 1[ ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε 6= ∅,∀ε > 0.

Remark 2.3. Theorem 2.5 is even more general than the others above, as any of the

above mentioned mappings is also a weak contraction, see Proposition 1 in [2].

Remark 2.4. An analogous result could be given for quasi-contractions with 0 < h <

1
2 , see again [2].

Similar results concerning the existence of ε−fixed points for other classes of

operators on metric spaces will be the subject of future papers.
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3. Quantitative results for operators on metric spaces

For the same operators we have studied in the previous section, from the

qualitative point of view, we will now use Lemma 1.2 in order to obtain quantitative

results.

Theorem 3.1. Let (X, d) be a metric space and f : X → X an a-contraction.

Then:

δ(Fε(f)) ≤ 2ε

1− a
,∀ε > 0.

Proof. Let ε > 0. Condition ı) in Lemma 1.2 is satisfied, as one can see in the proof

of Theorem 2.1.

We will show now that ıı) also holds for a-contractions.

Let η > 0 and x, y ∈ Fε(f). We also assume that

d(x, y)− d(f(x), f(y)) ≤ η

and aim to show that there exists an ϕ(η) > 0 such that d(x, y) ≤ ϕ(η).

We have that:

d(x, y) ≤ d(f(x), f(y)) + η ≤ ad(x, y) + η

⇒ (1− a)d(x, y) ≤ η,

which implies d(x, y) ≤ η

1− a
.

So ∀η > 0,∃ϕ(η) =
η

1− a
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η).

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε

1− a
,∀ε > 0.
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Theorem 3.2. Let (X, d) be a metric space and f : X → X a Kannan operator.

Then:

δ(Fε(f)) ≤ 2ε(1 + a),∀ε > 0.

Proof. Let ε > 0. As in the proof of Theorem 3.1 we only verify that condition ıı) in

Lemma 1.2 holds.

Let η > 0 and x, y ∈ Fε(f) and assume that d(x, y)− d(f(x), f(y)) ≤ η.

Then

d(x, y) ≤ a[d(x, f(x)) + d(y, f(y))] + η.

As x, y ∈ Fε(f), we know that d(x, f(x)) < ε and d(y, f(y)) < ε.

⇒ d(x, y) ≤ 2aε + η

So ∀η > 0,∃ϕ(η) = η + 2aε > 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ η.

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε(1 + a),∀ε > 0.

Theorem 3.3. Let (X, d) be a metric space and f : X → X a Chatterjea operator.

Then:

δ(Fε(f)) ≤ 2ε(1 + a)
1− 2a

,∀ε > 0.

Proof. Let ε > 0. Again we will only show that condition ıı) in Lemma 1.2 holds.

Let η > 0 and x, y ∈ Fε(f) and assume that

d(x, y)− d(f(x), f(y)) ≤ η.

Then

d(x, y) ≤ a[d(x, f(y)) + d(y, f(x))] + η ≤
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≤ ad(x, f(y)) + ad(y, f(x)) + η ≤

≤ a[d(x, y) + d(y, f(y))] + a[d(y, x) + d(x, f(x))] + η.

As x, y ∈ Fε(f), it follows that

d(x, y) ≤ 2ad(x, y) + 2εa + η.

⇒ (1− 2a)d(x, y) ≤ 2εa + η ⇒

d(x, y) ≤ η + 2εa

1− 2a

So ∀η > 0,∃ϕ(η) =
η + 2εa

1− 2a
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η).

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε(1 + a)
1− 2a

,∀ε > 0.

Theorem 3.4. Let (X, d) be a metric space and f : X → X a Zamfirescu operator.

Then

δ(Fε(f)) ≤ 2ε
1 + ρ

1− ρ
,∀ε > 0,

where ρ = max{a,
k

1− k
,

c

1− c
} and a, k, c as in Definition 2.4.

Proof. In the proof of Theorem 2.4 we have already shown that if f satisfies at least

one of the conditions ı), ıı) or ııı) from Definition 2.4, then

d(f(x), f(y)) ≤ 2ρd(x, f(x)) + ρd(x, y)

and

d(f(x), f(y)) ≤ 2ρd(y, f(y)) + ρd(x, y)

hold.
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Let ε > 0. Again we will only show that condition ıı) in Lemma 1.2 is satisfied,

as ı) holds, see the Proof of Theorem 2.4.

Let η > 0 and x, y ∈ Fε(f), and assume that

d(x, y)− d(f(x), f(y)) ≤ η.

Then

d(x, y) ≤ d(f(x), f(y)) + η ≤ 2ρd(x, f(x)) + ρd(x, y) + η ⇒

(1− ρ)d(x, y) ≤ 2ρε + η ⇒

d(x, y) ≤ η + 2ρε

1− ρ
.

So ∀η > 0,∃ϕ(η) =
η + 2ρε

1− ρ
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ η.

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε
1 + ρ

1− ρ
,∀ε > 0.

Remark 3.1. In the case of weak contractions we have to add a condition, namely

a + L < 1, with the same notations as above, in order to get the result.

Theorem 3.5. Let (X, d) be a metric space and f : X → X a weak contraction with

a + L < 1.

Then

δ(Fε(f)) ≤ 2 + L

1− a− L
ε,∀ε > 0.

Proof. Let ε > 0. We show again only that condition (ii) in Lemma 1.2 holds.

Let η > 0 and x, y ∈ Fε(f), and assume that

d(x, y)− d(f(x), f(y)) ≤ η.
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Then

d(x, y) ≤ d(f(x), f(y)) + η ≤ ad(x, y) + Ld(y, f(x)) + η ≤

≤ ad(x, y) + Ld(x, y) + Ld(x, f(x)) + η ≤ (a + L)d(x, y) + Lε + η.

⇒ (1− a− L)d(x, y) ≤ Lε + η ⇒ d(x, y) ≤ Lε + η

1− a− L

So ∀η > 0,∃ϕ(η) =
Lε + η

1− a− L
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ η.

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2 + L

1− a− L
ε,∀ε > 0.

4. Conclusions

The theory of ε−fixed points is not less interesting than that of fixed points

and many results formulated in the latter can be adapted to a less restrictive frame-

work in order to guarantee the existence of the ε−fixed points and the fact that the

diameter of the set containing these points goes to zero when ε goes to zero.

We proved results referring to some types of contractive operators on metric

spaces, starting from a result presented in [10] for a−contractions, but the study may

go further to other classes of operators, which will be the subject of future papers.
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