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COST OF TRACKING FOR DIFFERENTIAL STOCHASTIC
EQUATIONS IN HILBERT SPACES

VIORICA MARIELA UNGUREANU

Abstract. We consider the tracking problem for differential stochastic

equations diffusions dependent on both state and control variables. The

Riccati equation associated with this problem is in general different from

the conventional Riccati equation. We establish that under stabilizability

and uniform observability conditions this equation has a unique positive

and bounded on R+ solution. Using this result we find the optimal control

(and the optimal cost) for tracking problem (see also [11]).

Notations and statement of the problem

Let H,U, V be separable real Hilbert spaces. Let J ⊂ R+ = [0,∞) be an

interval. If E is a Banach space we denote by C(J,E) the space of all mappings

G(t) : J → E that are continuous. We also denote by Cs(J, L(H)) the space of all

strongly continuous mappings G(t) : J → L(H) and by Cb(J, L(H)) the subspace of

Cs(J, L(H)), which consist of all mappings G(t) such that sup
t∈ J

‖G(t)‖ < ∞. Given a

signal r ∈ Cb(R+,H) we want to minimize the cost

J(s, u) = lim
t→∞

1
t− s

E

t∫
s

‖C(σ) (x(σ)− r(σ))‖2 + 〈K(σ)u(σ), u(σ)〉 dσ
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in a suitable class of control u subject to the equation (denoted {A : B;Gi : Hi})

dx(t) = A(t)x(t)dt + B(t)u(t)dt +
m∑

i=1

(Gi(t)x(t) + Hi(t)u(t)) dwi(t) (1)

x(s) = x ∈ H.

We assume that the coefficients satisfy the following hypothesis:

P1: A,Gi ∈ Cb(R+, L(H)), i = 1, 2, ...m,m ∈ N∗, B,Hi ∈ Cb(R+, L(U,H)),

B∗,H∗
i ∈ Cb(R+, L(H,U)), C ∈ Cb(R+, L(H,V )), C∗C,Gi, G

∗
i ∈ Cb(R+, L(H)), K ∈

Cb(R+, L(U)) and there exist δ0 > 0 such that for all t ∈ R+,K(t) ≥ δ0I. If Z ∈

Cb(R+, L(H,V )), we will denote Z̃ = sup
0≤ r<∞

‖Z(r)‖ < ∞.

1. Stabilizability, detectability and uniform observability

It is known (see Proposition 5 in [13] and Definition 5.3 in [4]) that if A ∈

Cs(R+, L(H)) then the family A(t), t ≥ 0 generates an evolution operator U(t, s)

which has the following properties: 1. (t, s) → U(t, s) is continuous in the uniform

operator topology on {(t, s)/0 ≤ s ≤ t ≤ T}; 2. ∂U(t,s)x
∂t = L(t)U(t, s)x and ∂U(t,s)x

∂s =

−U(t, s)L(s)x for all x ∈ H and 0 ≤ s ≤ t ≤ T.

In the sequel we will assume that P1 holds if we don’t specify other conditions.

Let (Ω, F, Ft, t ∈ [0,∞), P ) be a stochastic basis. We consider the equation

dy(t) = A(t)y(t)dt +
m∑

i=1

Gi(t)y(t)dwi(t), y(s) = x ∈ H, (2)

denoted by {A;Gi}, where wi’s are independent real Wiener processes relative to Ft.

It is known (see [5] and the notations therein) that (2) has a unique mild solution in

C([s, T ];L2(Ω; H)) that is adapted to Ft; namely the solution of

y(t) = U(t, s)x +
m∑

i=1

t∫
s

U(t, r)Gi(r)y(r)dwi(r). (3)

This solution is also a strong solution, that is y(t) satisfies the integral equa-

tion

y(t) = x +

t∫
s

A(r)y(r)dr +
m∑

i=1

t∫
s

Gi(r)y(r)dwi(r).
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Definition 1. Let y(t, s;x) be the mild solution of {A;Gi}. We say that (2) is

uniformly exponentially stable if there exist constants M ≥ 1, ω > 0 such that

E ‖y(t, s;x)‖2 ≤ Me−ω(t−s) ‖x‖2 for all t ≥ s ≥ 0 and x ∈ H.

If C ∈ Cs([0,∞), L(H,V )) we consider the system formed by the equation

(2) and the observation relation z(t) = C(t)y(t, s, x) denoted by {A,Gi;C}.

Definition 2. (see [12]) We say that the system {A,C;Gi} is uniformly observable

if there exist τ > 0 and γ > 0 such that E
s+τ∫
s

‖C(t)y(t, s;x)‖2 dt ≥ γ ‖x‖2 for all

s ∈ R+ and x ∈ H.

Definition 3. (see [5]) We say that the system {A,C;Gi} is detectable if there exists

L ∈ Cb([0,∞), L(V,H)) such that {A + LC;Gi} is uniformly exponentially stable.

Definition 4. We say that {A : B;Gi : Hi} is stabilizable if there exists F ∈

Cb([0,∞), L(H,U)) such that {A + BF ;Gi + HiF} is uniformly exponentially sta-

ble.

In the deterministic case it is known (see [7] for the autonomous case) that

uniform observability implies detectability. We proved in [12] that this assertion is

not true in the stochastic case.

2. Bounded solutions of Riccati equation of stochastic control

Let us consider the linear and bounded operator

B: Cs(R+, L(H)) → Cs(R+, L(H,U)),B(P )(s) = B∗(s)P (s) +
m∑

i=1

H∗
i (s)P (s)Gi(s)

and the function K : Cs(R+, L(H)) → Cs(R+, L(U)), K(P )(s) = K(s) +
m∑

i=1

H∗
i (s)

P (s)Hi(s). Since K is uniformly positive, then it is easy to see that K(P ) is uniformly

positive. We consider the following Riccati equation in Cs([0,∞), L+(H))

P ′ + A∗P + PA +
m∑

i=1

G∗i PGi + C∗C − [B(P )]∗ [K(P )]−1 B(P ) = 0, (4)

where the weak differentiability is considered. If P ∈ Cs([0,∞), L+(H)) we put

S(s) = − [K(P )(s)]−1 B(P )(s), s ≥ 0. (5)
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and we denote Â = A−BS, Ĝi = Gi −HiS. Then (4) can be written as it follows

P ′ + Â∗P + PÂ +
m∑

i=1

Ĝ∗i PĜi + C∗C + S∗KS = 0. (6)

Arguing as in the proof of Proposition 4.64 [3] and using Dini’s theorem we

can prove the following lemma.

Lemma 1. If (Pn)n∈N∗ is an increasing sequence in Cs([0, T ], L+(H)) such as

Pn(t) ≤ I, for all t ∈ [0, T ] (I is the identity operator on H), then there exists

P ∈ Cs([0, T ], L+(H)) such as Pn(t)x →
n→∞

P (t)x, x ∈ H, uniformly for t ∈ [0, T ].

Theorem 1. The Riccati equation (4) with the final condition P (T ) = R ∈

L+(H), T ∈ R∗
+ has a unique solution in Cs([0, T ], L+(H)) denoted P (T, s;R), which

also belongs to C([0, T ], L+(H)) and has the following properties:

a) It is the unique solution of the integral equation

P (s)x = U∗(T, s)P (T )U(T, s)x +

T∫
s

U∗(r, s)[
m∑

i=1

G∗i (r)P (r)Gi(r) (7)

+C∗(r)C(r)− [B(P )(r)]∗ [K(P )(r)]−1 B(P )(r)]U(r, s)xdr.

b) It is monotone in the sense that P (T, s;R1) ≤ P (T, s;R2), if R1 ≤ R2.

Proof. The existence of the solution. The proof is similar to that given in [1] for

the finite dimensional case. We consider the following iterative scheme to con-

struct the solution of (6). Let P0 = I (I is the identity operator on H), S0 =

− [K(P0)]
−1 B(P0), Â0 = A−BS0, Ĝ0,i = Gi −HiS0, i = 1, ..,m. Using Lemma 1 in

[7] we deduce that the following differential equation

P ′n+1 + Â∗nPn+1 + Pn+1Ân +
m∑

i=1

Ĝ∗n,iPn+1Ĝn,i + C∗C + S∗nKSn = 0, (8)

Pn+1(T ) = R,

where Sn = − [K(Pn)]−1 B(Pn), Ân = A − BSn, Ĝn,i = Gi − HiSn, i = 1, ..,m,

n = 0, 1, 2, ... has a unique solution which belongs to Cs([0, T ], L+(H)). As in [1] we

can establish that {Pn(.)} is a decreasing sequence. Using the above lemma for the

increasing sequence {I − Pn(.)} , it follows that there exists P ∈ Cs([0, T ], L+(H))
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such that, for all x ∈ H, Pn(t)x →
n→∞

P (t)x, uniformly for t ∈ [0, T ]. As n →∞ in (8)

we deduce that P is weakly differentiable and satisfies (6). Thus (4) with the final

condition P (T ) = R ∈ L+(H), has a solution in Cs(R+, L+(H)). Differentiating the

function fx : [0, T ] → R fx(σ) = 〈P (σ)U(σ, s)x,U(σ, s)x〉 we get

∂fx(σ)
∂σ

= 〈P ′(σ)U(σ, s)x,U(σ, s)x〉+ 2 〈P (σ)A(σ)U(σ, s)x, U(σ, s)x〉 .

Now, we integrate from s to T , s ∈ [0, T ] the above relation and we obtain (7). Using

the Gronwall’s lemma we deduce that (7) has a unique solution in Cs(R+, L+(H)),

and consequently (4) has a unique solution in Cs(R+, L+(H)). It is not difficult to

see that a solution of (7) belongs to C(R+, L+(H)). Thus (4) has a unique solution

in C(R+, L+(H)) and a) holds.

Now we prove b).Let R,R1 ∈ L+(H), R1 ≤ R and let P (s) = P (T, s;R),

P1(s) = P (T, s;R1) be the corresponding solutions of (4). We use the notations

∆ = P−P1, S1 = − [K(P1)]
−1 B(P1), Â1 = A−BS1, Ĝ1,i = Gi−HiS1. Then, ∆ is the

solution of the following Lyapunov equation with the final condition ∆(T ) = R−R1

∆′ + Â∗1∆ + ∆Â1 +
m∑

i=1

Ĝ∗1,i∆Ĝ1,i + (S1 − S)∗K(P ) (S1 − S) = 0. (9)

Thus it follows that ∆ ≥ 0 and P −P1 ≥ 0 and we obtain the conclusion.

Remark 1. The function F : [0, T ] → R,F (t, x) = 〈P (t)x, x〉, where P (t) =

P (T, t;R) and the strong solution of (2) satisfy the conditions required by Ito’s formula

in infinite dimensions (see T. 3.8 in [2]).

Moreover, if P ∈ Cs(R+, L+(H)) is a solution of (4) and sup
s∈R+

‖P (s)‖ < ∞,

then P is said to be a bounded solution. Assume that (4) has a bounded solution P (s)

and let S(s) be given by (5). It is not difficult to see that S, S∗ ∈ Cb([0,∞), L(H,U)).

Definition 5. A bounded solution of (4) is called stabilizing for {A;Gi} if {A +

BS;Gi + HiS} is uniformly exponentially stable, where S(t) is given by (5).

Proposition 1. (see [5])The Riccati equation (4) has at most a bounded solution,

which is stabilizing for {A;Gi}.
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Proof. If P and P1 are two bounded solutions of (4) and P1 is stabilizing for {A;Gi}

then ∆ = P − P1 is a solution of (9). As in the proof of the above theorem, we get

∆(s)x = U∗
Â1

(T, s)∆(T )UÂ1
(T, s)x +

T∫
s

U∗
Â1

(r, s)[
m∑

i=1

G∗i (r)∆(r)Gi(r)+

[(S1 − S)∗K(P ) (S1 − S)](r)UÂ1
(r, s)xdr,

where UÂ1
(t, s) is the evolution operator generated by Â1. From the uniform exponen-

tial stability of {A+BS;Gi+HiS} it follows that UÂ1
(t, s) is uniformly exponentially

stable. Since it exists m1 ∈ R+ such that ‖(S1 − S) (r)‖ < m1 ‖∆ (r)‖ , we use Gron-

wall’s inequality to deduce that there exists M,a > 0, such that ‖∆(s)‖ ≤ Me−a(T−s).

As T →∞ we obtain ‖∆(s)‖ = 0, for all s ∈ [0,∞). The conclusion follows.

Reasoning as in [5], see Theorem 3.1 and stochasticize the proof we obtain

the following result.

Proposition 2. If {A;Gi} is stabilizable then there exists a nonnegative boun- ded

solution of the Riccati equation (4).

Arguing as in [12] we can prove the following result:

Theorem 2. Assume that {A,Gi;C} is uniformly observable. If P (t) is a nonnegative

bounded solution of (4) then

a) there exists δ > 0 such that P (t) ≥ δI for all t ∈ R+ (P is uniformly

positive on R+);

b) P is a stabilizing solution (for {A;Gi}).

The next theorem is a consequence of the above theorem and of Proposition 2.

Theorem 3. Assume {A,Gi;B} is stabilizable and {A,Gi;C} is uniformly observ-

able. Then the Riccati equation (4) has a unique nonnegative bounded on R+ solution

P (t), which is a stabilizing solution and there exists δ > 0 such that P (t) ≥ δI for all

t ∈ [0,∞).

Proposition 3. Assume that the hypotheses of the above theorem hod. If P is the

unique and bounded on R+ solution of the Riccati equation (4) and S is the operator
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given by (5), then the equation

g′(t) = − (A∗ + S∗B∗) g(t) + C∗(t)C(t)r(t) (10)

has a unique solution in Cb([0,∞),H), where we consider the weak differentiability.

Moreover, the function (t, x) → 〈g′(t), x〉 is continuous on [0,∞)×H.

Proof. Since A + BS is the generator of an evolution operator UA,B(t, s), it is not

difficult to see that the integral g(s) =
∞∫
s

U∗A,B(σ, s)C∗(σ)C(σ)r(σ)dσ is convergent in

H and g(s) is bounded on R+. Differentiating the function t → 〈g(t), y〉 , y ∈ H, we

see that ∂
∂t 〈g(t), y〉 = 〈− (A∗ + S∗B∗) g(t) + C∗(t)C(t)r(t), y〉 and g(t) is a solution of

(10). If h is an other bounded solution then (h− g)′ (t) = − (A∗ + S∗B∗) (h− g) (t).

The unique solution of the last equation with the final condition (h− g) (t) =

h(t) − g(t) is (h− g) (s) = U∗A,B(t, s) [h(t)− g(t)]. As t → ∞ and since UA,B(t, s)

is exponentially stable and the functions g and h are bounded on R+, we deduce

that (h− g) (s) = 0, for all s ≥ 0. Thus h ≡ g, and (10) has a unique solu-

tion. The last statement follows from the hypothesis, if we see that 〈g′(t), x〉 =

−〈g(t), (A(t) + B(t)S(t))x〉+ 〈C∗(t)C(t)r(t), x〉 .

We take the set of admissible controls Uad = {u is an U - valued random

variable, Fs− measurable such as lim
t→∞

1
t−sE

t∫
s

‖u(σ)‖2 dσ < ∞ and sup
t≥s

E ‖x(t)‖2 <

∞, where x is the solution of (1)}.

Theorem 4. Assume that the hypotheses of the Theorem 3 hold. If P is the unique

and bounded on R+ solution of the Riccati equation and g(t) is the unique solution

of (10) then the optimal control is

u(t) = − [K(P )(σ)]−1 [B(P )(σ)x(σ) + B∗(σ)g(σ)]

and the optimal cost is

J(s) = inf
u∈Uad

J(s, u) =

lim
t→∞

1
t− s

[

t∫
s

‖C(σ)r(σ)‖2 dσ −
t∫

s

|| [K(P )(σ)]−1/2
B∗(σ)g(σ)||2dσ].
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Proof. We consider the function F (t, x) = 〈P (t)x, x〉+2 〈g(t), x〉, which is continuous

together its partial derivatives Ft, Fx, Fxx on [0,∞) × H, according the Remark 1

and the above proposition. Let u ∈ Uad and x be its response. Using Ito’s formula

for F (t, x) and the strong solution of (1) we get

E 〈P (t)x(t), x(t)〉+ 2 〈g(t), x(t)〉 − E 〈P (s)x, x〉 − 2 〈g(s), x〉 =

−
t∫
s

‖C(σ) [x(σ)− r(σ)]‖2 + 〈K(σ)u(σ), u(σ)〉 dσ+

t∫
s

∥∥∥K(P )(σ)1/2
[
u(σ) + [K(P )(σ)]−1 [B(P )(σ)x(σ) + B∗(σ)g(σ)]

]∥∥∥2

+
t∫
s

‖C(σ)r(σ)‖2 dσ −
t∫
s

|| [K(P )(σ)]−1/2
B∗(σ)g(σ)||2dσ. Since P (t) and g(t)

are bounded on R+ we multiply the last relation with 1
t−s and passing to the limit

as t →∞ and, then, to the infimum we get the conclusion.
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