
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 4, December 2004

TWO- AND THREE-DIMENSIONAL INVERSE PROBLEM
OF DYNAMICS

MIRA-CRISTIANA ANISIU

Abstract. For a given a monoparametric family of curves f(x, y) = c, we

present the partial differential equations satisfied by the potentials V =

V (x, y) under whose action a particle of unit mass can describe the curves

of the family. Szebehely’s equation depends on the total energy of the

particle, while Bozis’ one relates merely the potential and the given family.

Therefore the last one is also adequate for the direct problem of dynamics.

A similar program is accomplished for a two-parametric spatial family of

curves ϕ(x, y, z) = c1, ψ(x, y, z) = c2 and potentials V = V(x, y, z).

1. Introduction

The first result concerning the inverse problem of dynamics is due to Newton

[24], who presented the form of the gravitational potential on the basis of Kepler’s

laws. Kepler has had at his disposal the very accurate tables of observations made

by Tycho Brache (whose assistant he was in Prague); these observations allowed him

to discover that the orbit of Mars is an ellipse and to formulate the three laws of

planetary motion.

Later on, Bertrand [7] showed that Kepler’s first law suffices to derive the

Newtonian universal force; Dainelli [18] obtained the expressions of general force

fields producing given planar or spatial families of curves.
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The two-dimensional problem, this time for conservative systems, has renewed

the interest in the inverse problem of dynamics by means of Szebehely’s [29] partial

differential equation. This equation relates the potential to the given monoparametric

family of curves and to the total energy. Puel [26] derived a Szebehely-type equation

which is independent of the coordinate system. Another basic result for the two-

dimensional inverse problem is the energy-free partial differential equation obtained

by Bozis [9] from Szebehely’s equation, and later derived directly by Anisiu [3].

The conservative three-dimensional problem was considered by Érdi [19] for

a monoparametric family of orbits, and then for two-parametric families by Váradi

and Érdi [30]. Puel [25] used the least action principle of Maupertuis to obtain the

equations satisfied by the potential in the two- and three-dimensional inverse problem

of dynamics. The existence of such a potential and its relation with the energy in the

three-dimensional case was subject to further papers, as those of Gonzales-Gascon et

al [21], Bozis and Nakhla [15] and Shorokhov [28]. Puel [27] obtained the intrinsic

equations of the three-dimensional inverse problem, using the Frenet reference frame.

A review of the basic results in the inverse problem of dynamics, including the three-

dimensional ones, can be found in [10].

2. The planar inverse problem of dynamics

We consider the following version of the inverse problem for one material

point of unit mass, moving in the xy inertial Cartesian plane. Given a family of

curves

f (x, y) = c (1)

with f of C3-class (continuous and with continuous derivatives up to third order on a

domain of the plane), find the potentials V (x, y) under whose action, for appropriate

initial conditions, the particle will describe the curves of that family. The equations

of motion are

ẍ = −Vx ÿ = −Vy, (2)
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where the dots denote derivatives with respect to the time t and the subscripts partial

derivatives. By making use of the energy integral, Szebehely [29] proved that the

potential V is a solution of the first order partial differential equation

fxVx + fyVy +
2 (V − E(f))
f2

x + f2
y

(
fxxf

2
y − 2fxyfxfy + fyyf

2
x

)
= 0, (3)

where E(f) denotes the total energy, which is constant on each curve of the family

(1). Bozis [8] wrote Szebehely’s equation in the simpler form

Vx + γVy +
2Γ (E(f)− V )

1 + γ2
= 0, (4)

making use of the functions

γ =
fy

fx
and Γ = γγx − γy (5)

related to the geometry of the family (γ representing the slope and Γ being propor-

tional to the curvature). By eliminating the energy from (4) (using the fact that

Ey/Ex = fy/fx) Bozis [9] obtained the energy-free equation of second order

−Vxx + κVxy + Vyy = λVx + µVy, (6)

where

κ =
1
γ
− γ, λ =

Γy − γΓx

γΓ
, µ = λγ +

3Γ
γ
. (7)

The basic equations (4) and (6) of the planar inverse problem of dynamics present

the connection between geometry and dynamics. Their derivation and other related

results are exposed in [10], [2], [1], [3].

Szebehely obtained the first order equation intending to determine the po-

tential of the earth by means of satellite observations, while Bozis used equation (6)

to check if a given family of orbits may be generated in the plane of symmetry outside

a material concentration.
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2.1. Basic tools. Let us consider a particle whose motion is described by equations

(2), where V is of C2-class on a domain of the xy plane. We shall use a procedure

exposed by Anisiu [3], related to that followed by Kasner [22] while he has obtained

the differential equation of the trajectories corresponding to a general (not necessarily

conservative) force field. By differentiating (1) with respect to t we get fxẋ+fy ẏ = 0,

or, using notation (5),

γ = − ẋ
ẏ
. (8)

By differentiating (8) we get

−Γ =
ẋÿ − ẏẍ

ẏ3
. (9)

Inserting in (9) ẍ and ÿ from (2), and ẋ from (8) we obtain

Γẏ2 = − (Vx + γVy) .

The function Γ is related to the curvature K of the family (1) by K =

|Γ| /
(
γ2 + 1

)3/2. It follows that Γ = 0 if and only if the family (1) contains only

straight lines. In this case, which was studied in [11], we have by necessity

Vx + γVy = 0, (10)

which represents Szebehely’s equation for this special case. The straight lines are

traced with arbitrary energy.

Let us consider now a general family (1) with Γ 6= 0. In this case we have

ẏ2 = −Vx + γVy

Γ
. (11)

We differentiate (9), divide both members by ẏ and get

γΓx − Γy =
ẏ (ẋ

...
y − ẏ

...
x )− 3ÿ (ẋÿ − ẏẍ)
ẏ5

. (12)

We remark that (8), (9) and (12) express the relations between the geometry

of the family of curves (1) and the kinematics derivatives.
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Two additional equations are obtained by differentiating equations (2) with

respect to t, namely
...
x = − (Vxxẋ+ Vxy ẏ)
...
y = − (Vxyẋ+ Vyy ẏ) .

(13)

Now we eliminate the derivatives ẋ, ẏ, ẍ, ÿ,
...
x ,

...
y between the seven relations in (2),

(8), (11), (12) and (13), and get the partial differential equation

Γ
(
−γVxx + Vxy − γ2Vxy + γVyy

)
= − (Vx + γVy) (γΓx − Γy) + 3VyΓ2. (14)

We divide both members of (14) by γΓ and obtain Bozis’ equation (6), with λ and µ

given in (7).

A straightforward calculation shows that equation (6) can be written as

γWx −Wy = 0, (15)

where

W = V − 1 + γ2

2Γ
(Vx + γVy) . (16)

Equation (15) has the general solution W = E(f), where E denotes an arbitrary

function. It follows that

V − 1 + γ2

2Γ
(Vx + γVy) = E(f). (17)

In view of relations (2), (8) and (9) we obtain

V +
ẋ2 + ẏ2

2
= E(f), (18)

which means that E(f) represents the total energy, constant on each curve of the

family (1). Therefore equation (17), obtained this time from Bozis’ equation, is in

fact Szebehely’s equation. From (18) we obtain E(f)−V ≥ 0, and from (17) it follows

that only the curves of the family (1) or parts of them which are situated in the plane

region
Vx + γVy

Γ
≤ 0 (19)

can be described by the unit mass particle. Inequality (19) was obtained by Bozis

and Ichtiaroglou [12].
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Remark 1. Bozis [10] arranged equation (6) in a form adequate for the direct problem

of dynamics, namely

γ2γxx − 2γγxy + γyy = h, (20)

where

h =
γγx − γy

Vyγ + Vx

(
−γxVx + (2γγx − 3γy)Vy + γ (Vxx − Vyy) + (γ2 − 1)Vxy

)
. (21)

Relations (20)-(21) have been used to find families of curves satisfying auxiliary con-

ditions, supposing that a potential is given, in [16], [17], [6].

2.2. Examples.

Example 2. From the class of Hénon-Heiles potentials

V (x, y) = ax2 + by2 + cx2y + dy3 (22)

with a, b, c, d ∈ R, a, b > 0, Anisiu and Pal [5] looked for those compatible with the

family of polytropic curves f(x, y) = x−py, where p ∈ Z r {0, 1}. The potential

V1(x, y) = a
(
x2 + 16y2

)
+ c

(
x2 + (16/3)y2

)
y

was found to generate the family f1(x, y) = x−4y in the region described by y(cx2 +

8cy2 + 24ay) ≤ 0, with the energy E1(f1) = −c/(24f1). Another potential is

V2(x, y) = a
(
x2 + 4y2

)
+ dy3,

which produces the family f2(x, y) = x2y in the region dy + 4a ≤ 0, with the energy

E2(f2) = −df2/4.

It was shown in [11] that no potential of the form (22) allows for families of

straight lines.

Example 3. For the family f = y − 1/x2, the potential

V (x, y) = 8y2 + 4x2y − x8 − 6x2

was found in [17]. The particle describes the curves of the given family in the region

y ≤ x4 + 1/(2x2) with the energy E(f) = 8f2.
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3. The three-dimensional inverse problem

We consider the three-dimensional family of curves

ϕ (x, y, z) = c1, ψ (x, y, z) = c2. (23)

with ϕ,ψ of C3-class and with ∣∣∣∣∣∣ ϕy ϕz

ψy ψz

∣∣∣∣∣∣ 6= 0. (24)

We can suppose that any other determinant (containing derivatives with respect to x

and y, or to x and z) is different from zero, and proceed accordingly.

We deal with the following version of the inverse problem: find the potentials

V (x, y, z) under whose action, for appropriate initial conditions, a material point of

unit mass, whose motion is described by

ẍ = −Vx ÿ = −Vy z̈ = −Vz, (25)

will trace the curves of the family (23). The partial differential equations satisfied by

V will be derived as in [4], where the geometrical methods used by Kasner [23] were

adapted to this problem.

3.1. Basic tools. In order to obtain the equations satisfied by V, we differentiate

both sides of equations (23) with respect to t, and get

ẏ

ẋ
= α,

ż

ẋ
= β, (26)

where

α =
ϕzψx − ϕxψz

ϕyψz − ϕzψy
, β =

ϕxψy − ϕyψx

ϕyψz − ϕzψy
. (27)

We remark that at least one of the functions α and β, say α, is not identically null

(otherwise condition (24) fails to be fulfilled).

The notation (27) was introduced by Bozis and Kotoulas [13], where it was

emphasized that the family (23) leads to a unique pair α, β and, conversely, the pair

α, β determines uniquely the family (23).
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We differentiate both relations in (26) and get

ẋÿ − ẍẏ

ẋ3
= A,

ẋz̈ − ẍż

ẋ3
= B, (28)

where

A = αx + ααy + βαz, B = βx + αβy + ββz. (29)

Using (26) and equations (25), we obtain from (28)

αVx − Vy

ẋ2
= A,

βVx − Vz

ẋ2
= B. (30)

We have to analyze the special case when A = B = 0. It is obvious that,

in view of relation (28), it follows that also ẏz̈ − ÿż = 0, hence the curvature K =

|
.
r ×

..
r|/|

.
r|3 of each member of the family (23) vanishes. We have denoted by r =

x (t) i+ y (t) j + z (t) k, where i, j, k are unit vectors along the axes Ox, Oy, Oz.

It follows that we have A = B = 0 if and only if the family (23) consists of

straight lines. This case was analyzed in detail in [13]. Relations (30) give rise to two

linear partial differential equations to be necessarily satisfied by V, namely

αVx − Vy = 0, βVx − Vz = 0. (31)

These equations will admit of a solution only if α and β satisfy, besides the two

equations obtained from (29) for A = B = 0, a supplementary equation (see [20])

αβx − βαx = βy − αz. (32)

So, generally, the inverse problem is not expected to have a solution for arbitrary

families of straight lines.

Let us consider now A 6= 0 and B 6= 0. By eliminating ẋ2 between the two

relations in (30) we obtain a first necessary condition to be satisfied by V,

αVx − Vy

A
=
βVx − Vz

B
, (33)

where α, β from (27) and A,B from (29) depend on the derivatives of ϕ and ψ up to

the second order. Because of ẋ2 ≥ 0, it follows that the motion is possible only in the

region determined by
αVx − Vy

A
≥ 0. (34)
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Differentiating both members of the equality ẋ2 = (αVx − Vy) /A with respect

to t and replacing ẍ from the first equation in (25), respectively ẏ/ẋ and ż/ẋ from

(26), we obtain a second differential relation to be satisfied by V

−Vxx + kVxy + Vyy + pVyz + qVxz = lVx +mVy, (35)

where

k =
1
α
− α, p =

β

α
, q = −β

l =
3A
α

− αm, m =
Ax + αAy + βAz

αA
.

(36)

Summarizing the above reasoning, we assert that a potential which produces

as orbits the curves of the family (23) satisfies by necessity the two differential relations

(33) and (35), the motion of the particle being possible in the region determined by

inequality (34). We remark that equation (35) is of second order in V and does not

involve the energy (constant on each curve of the family), hence it is the corresponding

for the three-dimensional case of Bozis’ equation (6) satisfied by planar potentials.

In the following we shall derive the equation from which the total energy can

be expressed. Denoting by

W =
(
1 + α2 + β2

) αVx − Vy

2A
+ V, (37)

one can check by direct calculation that (35) is equivalent to

Wx + αWy + βWz = 0. (38)

The characteristic system for (38) is

dx

ϕyψz − ϕzψy
=

dy

ψxϕz − ϕxψz
=

dz

ϕxψy − ϕyψx

and one obtains easily that ϕxdx + ϕydy + ϕzdz = 0 and ψxdx + ψydy + ψzdz = 0.

It follows that ϕ (x, y, z) = c1 and ψ (x, y, z) = c2 are integrals, hence the general

solution of (38) is W = E (ϕ,ψ) with E an arbitrary function.

In view of relations (26) and (30), we get from (37) that

E (ϕ,ψ) =
(
ẋ2 + ẏ2 + ż2

)
/2 + V, (39)
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i.e. W = E (ϕ,ψ) is the total energy, constant on each curve of the family (23). It

follows that the equation

E (ϕ,ψ) =
(
1 + α2 + β2

) αVx − Vy

2A
+ V, (40)

which was derived by Váradi and Érdi [30] using the energy integral (and which

corresponds to Szebehely’s planar equation), can be obtained as a consequence of the

second order partial differential equation (35).

The two equations (33) and (35) for a single unknown function V will not

have always a solution; compatibility conditions are to be checked. The advantage of

this formulation consists in the fact that it is free of energy.

Remark 4. Equations (33) and (35) are suitable for the direct problem of dynamics:

given a three-dimensional potential, find families of curves of the form (23) generated

by it. We can rearrange the mentioned equations and obtain a linear partial differential

equation of first order in α and β

(Vxβ − Vz) (αx + ααy + βαz)− (Vxα− Vy) (βx + αβy + ββz) = 0, (41)

and a nonlinear one of second order

αxx + α2αyy + β2αzz + 2ααxy + 2βαxz + 2αβαyz =
A

Vxα− Vy
· (3Vxαx + (2Vxα+ Vy)αy + (2Vxβ + Vz)αz

+Vxxα− Vxy

(
1− α2

)
− Vyyα− Vyzβ + Vxzαβ

)
.

(42)

If B = 0 and A 6= 0, we still have inequality (34); instead of (33), the relation

βVx − Vz = 0 holds, beside the second order partial differential equation (35).

If A = 0 and B 6= 0, the inequality to be satisfied is (βVx − Vz) /B ≥ 0, and

(33) is replaced by αVx − Vy = 0. Starting with ẋ2 = (βVx − Vz) /B, we follow the

steps from the case when both A and B were different from zero and obtain instead

of (35)

−Vxx + k̃Vxz + Vzz + p̃Vyz + q̃Vxy = l̃Vx + m̃Vz, (43)
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where
k̃ =

1
β
− β, p̃ =

α

β
, q̃ = −α

l̃ =
3B
β

− βm̃, m̃ =
Bx + αBy + βBz

βB
.

(44)

3.2. Examples.

Example 5. The two-parametric family of straight lines

y

x
= c1,

z

x
= c2

was found in [13] to be compatible with the (central) potential

V(x, y, z) = F (x2 + y2 + z2),

where F is an arbitrary function of its argument.

Shorokhov [28] presented a family of straight lines

x

y
= c1, y + z = c2

which cannot be described by a particle under the action of any potential. This family

has α = y/x and β = −y/x, hence condition (31) does not hold.

Example 6. The family of curves

z

x
= c1, x2 + y2 = c2

was considered in [30] and [15]. It can be traced all over the space under the action

of the potential

V(x, y, z) = (x2 + y2 + z2)/2,

with the energy E(ϕ,ψ) = ψ(ϕ2 + 2)/2. This example illustrates the case A 6= 0,

B = 0.

Example 7. For the family of curves

x2 + y2 = c1,
x2 − y2

z
= c2

one has A 6= 0 and B 6= 0. The potential

V(x, y, z) = x2 + y2 + 4z2
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given in [14] produces the given family with the energy E(ϕ,ψ) = 2ϕ
(
2ϕ+ ψ2

)
/ψ2.

4. Conclusions

The energy-free equations have a basic role in the inverse problem of dy-

namics. When we have no a priori information on the energy of the given family, it

is natural to work with equations (6), respectively (33) and (35) in order to obtain

potentials compatible with the given family. These equations can be used also when

the search of the potentials is restricted to a class of theoretical or practical interest.
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