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ON THE BASIC PROPERTIES OF DISCONTINUOUS FLOWS

E. AKALIN AND M. U. AKHMET

Abstract. In this paper, we define discontinuous dynamical systems

which can be used as models of various processes in mechanics, electron-

ics, biology and medicine. We find sufficient conditions to guarantee the

existence of such systems. These conditions are easy to verify.

1. Introduction and preliminaries

A book [1] edited by D.V. Anosov and V.I. Arnold considers two fundamen-

tally different Dynamical Systems (DSs) : flows and cascades. Roughly speaking,

flows are DSs with continuous time and cascades are DSs with discrete time. One

of the most important theoretical problem is to consider Discontinuous Dynamical

Systems (DDSs). That is systems whose trajectories are piecewise continuous curves.

It is well-recognized (for example, see [2]) that the general notion of such systems

was introduced by Th. Pavlidis [3], although particular examples (the mathematical

model of clock [4]-[6] and so on) had been discussed before. Some basic elements of

the theory are given in [7]-[11]. Analysing the behavior of the trajectories we can con-

clude that DDSs combine features of vector fields and maps, they can not be reduced

to flows or cascades, but are close to flows since time is continuous. That is why we

propose to call them also Discontinuous Flows (DFs). Applications of DDSs in me-

chanics, electronics, biology and medicine were considered in [3], [12] - [15]. Chaotic

behavior of discontinuous processes was investigated in [13, 16]. One must emphasize

that DFs are not differential equations with discontinuous right side which often have
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been accepted as DDSs [17]. However, theoretical problems of nonsmooth dynamics

and discontinuous maps [18]-[25] are also very close to the subject of our paper. One

should also agree that nonautonomous impulsive differential equations, which were

thoroughly described in [8] and [11], are not DFs.

The paper embodies results that provide sufficient conditions for the existence

of a differentiable DF. Since DFs have specific smoothness of solutions we call these

systems B-differentiable DFs. Apparently, it is the first time when notions of B−

continuous and B− differentiable dependence of solutions on initial values [27] are

applied to described DDSs and sufficient conditions for the continuation of solutions

and the group property are obtained. A central auxiliary result of the paper is the

construction of a new form of the general autonomous impulsive equation (system

(1)). Effective methods of investigation of systems with variable time of impulsive

actions were considered in [8, 11], [27]- [31].

Let Z,N and R be the sets of all integers, natural and real numbers, respec-

tively. Denote by || · || the Euclidean norm in Rn, n ∈ N. Consider a set of strictly

ordered real numbers {θi}, where the set A of indices is an interval of Z/{0}.

Definition 1.1. The set {θi} is said to be a sequence of β − type if the product

iθi, i ≥ 0 for all i and one of the following alternative cases holds:

(a) {θi} = ∅;

(b) {θi} is a finite and nonempty set;

(c) {θi} is an infinite set such that |θi| → ∞ as |i| → ∞.

From the definition, it follows immediately that a sequence of β − type does

not have a finite accumulation point in R.

Definition 1.2. A function ϕ : R −→ Rn is said to be from a space PC(R) if

1. ϕ(t) is left continuous on R;

2. there exists a sequence {θi} of β− type such that ϕ is continuous if t 6= θi

and ϕ has discontinuities of the first kind at the points θi.

Particularly, C(R) ⊂ PC(R).

Definition 1.3. A function ϕ(t) is said to be from a space PC1(R) if ϕ′ ∈ PC(R).

4



ON THE BASIC PROPERTIES OF DISCONTINUOUS FLOWS

Let T be an interval in R.

Definition 1.4. We denote by PC(T ) and PC1(T ) the sets of restrictions of all

functions from PC(R) and PC1(R) on T respectively.

Let G be an open subset of Rn, Gr be an r− neighbourhood of G in Rn for

a fixed r > 0 and Ĝ ⊂ Gr be an open subset of Rn. Denote as Φ : Ĝ −→ R be a

function from C1(Ĝ) and assume that a surface Γ = Φ−1 (0) is a subset of Ḡ, where

Ḡ denotes the closure of the set G in Rn. Moreover, define a function J : Γr → Ḡ ,

where Γr is an r− neighbourhood of Γ. We shall need the following assumptions.

C1) ∇Φ(x) 6= 0 , ∀x ∈ Γ;

C2) J ∈ C1(Γr),det[∂J(x)
∂x ] 6= 0, for all x ∈ Γ.

One can see that the restriction J |Γ is a one-to-one function. Let also Γ̃ = J(Γ), Γ̃ ⊂

Ḡ. If Φ̃(x) = Φ(J−1(x)), x ∈ Γ̃ then Γ̃ =
{
x ∈ G| Φ̃ (x) = 0

}
. It is easy to verify that

∇Φ̃(x) 6= 0, ∀x ∈ Γ̃.

Consider the following impulsive differential equation in the domain D =[
G ∪ Γ ∪ Γ̃

]
\

[(
Γ̄\Γ

)
∪

(
¯̃Γ\Γ̃

)]

x′(t) = f(x(t)), {x(t) /∈ Γ ∧ t ≥ 0} ∨ {x(t) /∈ Γ̃ ∧ t ≤ 0},

x(t+)|x(t−)∈Γ∧t≥0 = J(x(t−)),

x(t−)|x(t+)∈Γ̃∧t≤0 = J−1(x(t+)). (1)

We make the following assumptions which will be needed throughout the

paper.

C3) f ∈ C1(Gr).

C4) Γ ∩ Γ̃ = ∅, Γ ∩
(
¯̃Γ\Γ̃

)
= ∅,

(
Γ̄\Γ

)
∩ Γ̃ = ∅.

C5) 〈∇Φ(x), f(x)〉 6= 0 if x ∈ Γ.

C6)
〈
∇Φ̃(x), f(x)

〉
6= 0 if x ∈ Γ̃.
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2. Main results

Definition 2.1. A function x(t) ∈ PC1(T ) with a set of discontinuity points {θi} ⊂ T

is said to be a solution of (1) on the interval T ⊂ R if it satisfies the following

conditions:

(i) equation (1) is satisfied at each point t ∈ T\{θi} and x′(θi−) =

f(x((θi))), i ∈ A, where x′(θi−) is the left-sided derivative;

(ii) x(θi+) = J(x((θi)) for all θi.

Theorem 2.1. Assume that conditions C1)−C6) hold. Then for every x0 ∈ D there

exists an interval (a, b) ⊂ R, a < 0 < b, such that the solution x(t) = x(t, 0, x0) of (1)

exists on the interval.

Definition 2.2. A solution x(t) : [a,∞) → Rn, a ∈ R, of (1) is said to be continuable

to ∞.

Definition 2.3. A solution x(t) : (−∞, b] → Rn, b ∈ R, of (1) is said to be continuable

to −∞.

Definition 2.4. A solution x(t) of (1) is said to be continuable on R if it is continu-

able to ∞ and to −∞.

Definition 2.5. A solution x(t) = x(t, 0, x0) of (1) is said to be continuable to a

set S ⊂ Rn as time decreases (increases) if there exists a moment ξ ∈ R, such that

ξ ≤ 0 (ξ ≥ 0) and x(ξ) ∈ S.

Denote by B(x0, ξ) = {x ∈ Rn|||x− x0|| < ξ} a ball with centre x0 ∈ Rn and

radius ξ ∈ R.

The following Theorem provides sufficient conditions for the continuation of

solutions of (1).

Theorem 2.2. Assume that

(a) every solution y(t, 0, x0), x0 ∈ D, of

y′ = f(y). (2)

satisfies the following conditions:
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(a1) it is continuable either to ∞ or to Γ as time increases,

(a2) it is continuable either to −∞ or to Γ̃ as time decreases;

(b) for every x ∈ Γ̃ there exists a number εx > 0 such that B̄(x, εx) ∩ Γ = ∅;

b′) for every x ∈ Γ there exists a number ε̃x > 0 such that B̄(x, ε̃x) ∩ Γ̃ = ∅;

(c) inf(x,εx)∈Γ̃×R
εx

supB̄(x,εx)‖f(x)‖ > 0;

c′) inf(x,ε̃x)∈Γ×R
ε̃x

supB(x,ε̃x)‖f(x)‖ > 0.

Then every solution x(t) = x(t, 0, x0), x0 ∈ D, of (1) is continuable on R.

Consider a solution x(t) : R → Rn of (1). Let {θi} be the sequence of

discontinuity points of x(t). Fix θ ∈ R and introduce a function ψ(t) = x(t+ θ).

Lemma 2.1. The set {θi − θ} is a set of all solutions of the equation

Φ(ψ(t)) = 0. (3)

The following condition is one of the main assumptions for DFs.

C7) Γ, Γ̃ ⊂ ∂G;

∃ε > 0 such that ∀x ∈ Γε ∩G function Φ(x) is either positive or negative;

∃ε > 0 such that ∀x ∈ Γ̃ε ∩G function Φ̃(x) is either positive or negative.

Lemma 2.2. Assume that C1) − C7) hold. Then x(−t, 0, x(t, 0, x0)) = x0 for all

x0 ∈ D, t ∈ R.

Lemma 2.3. If x(t) : T → Rn is a solution of (1) then x(t + θ), θ ∈ R, is also a

solution of (1).

Lemmas 2.1-2.3 imply that the following theorem is valid.

Theorem 2.3. Assume that conditions C1)− C7) are fulfilled. Then

x(t2, x(t1, x0)) = x(t2 + t1, x0), (4)

for all t1, t2 ∈ R.

Let x0(t) : [a, b] → Rn, a ≤ 0 ≤ b, be a solution of (1), x0(t) =

x(t, 0, x0), θi, i = −k, . . . ,−1, 1, . . . ,m, are the points of discontinuity of x0(t), such
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that a ≤ θ−k < · · · < θ−1 ≤ 0 ≤ θ1 < · · · < θm ≤ b. Denote by x(t) = x(t, 0, x̄)

another solution of (1).

Definition 2.6. The solution x(t) : [a, b] → Rn is said to be in an ε-neighbourhood

of x0(t) if:

1. every point of discontinuity of x(t) lies in an ε-neighbourhood of a point

of discontinuity of x0(t);

2. For each t ∈ [a, b] which is outside of ε-neighbourhood of points of discon-

tinuity of x0(t) the inequality
∥∥x0(t)− x(t)

∥∥ < ε holds.

Definition 2.7. Hausdorff’s topology, which is built on the basis of all ε-neighbour-

hoods, 0 < ε <∞, of piecewise solutions will be called B[a,b]-topology.

Theorem 2.4. Assume that conditions C1) − C7) are satisfied. Then the solution

x(t) continuously depends on initial value in B[a,b] topology .

Moreover, if all θi, i = −k, . . . ,−1, 1, . . . ,m, are interior points of [a, b] , then, for

sufficiently small ||x0 − x̄||, the solution x(t) = x(t, 0, x̄), x(t) : [a, b] → Rn, meets the

surface Γ exactly m+ k − 1 times.

Without loss of generality, assume that all points of discontinuity of x0(t) are

interior. Denote by xj(t), j = 1, n, a solution of (1) such that xj(t0) = x0 + ξej =

(x0
1, x

0
2, . . . , x

0
j−1, x

0
j + ξ, x0

j+1, . . . , x
0
n), ξ ∈ R, (t0, x0 + ξej , µ0) ∈ C0(δ) and let θj

i be

the moments of discontinuity of xj(t). By Theorem 2.4, for sufficiently small |ξ| the

solution xj(t) is defined on [a, b].

Definition 2.8. The solution x0(t) is said to be differentiable in x0
j , j = 1, n, if

A) there exist such constants νij , i = −k, . . . ,−1, 1, . . . ,m, that

θj
i − θi = νijξ + o(|ξ|); (5)

B) for all t ∈ [a, b]\ ∪m
i=−k

ˆ(θi, θ
j
i ], the following equality is satisfied

xj(t)− x0(t) = uj(t)ξ + o(|ξ|), (6)

where uj(t) is a piecewise continuous function, with discontinuities of the first kind

at the points t = θi, i = −k, . . . ,−1, 1, . . . ,m.
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The pair {uj , {νij}i} is said to be a B− derivative of x0(t) in initial value xj
0

on [a, b].

The following theorem is valid.

Theorem 2.5. Assume that conditions C1) − C7) are satisfied. Then the solution

x0(t) of (1) has B− derivatives in the initial value on [a, b].

3. The B-smooth discontinuous flow

Let G ⊂ Rn be an open set and Γ, Γ̃ be disjoint subsets of Ḡ. Denote D =

G ∪ Γ ∪ Γ̃.

Definition 3.1. We say that a B− smooth DF is a map φ : R × D → D, which

satisfies the following properties:

I) The group property:

(i) φ(0, x) : D → D is the identity;

(ii) φ(t, φ(s, x)) = φ(t+ s, x), is valid for all t, s ∈ R and x ∈ D.

II) If x ∈ D is fixed then φ(t, x) ∈ PC1(R), and φ(θi, x) ∈ Γ, φ(θi+, x) ∈ Γ̃

for every discontinuity point θi of φ(t, x).

III) The function φ(t, x) is B− differentiable in x ∈ D on [a, b] ⊂ R for

every {a, b} ⊂ R, assuming that all discontinuity points of φ(t, x) are interior points

of [a, b].

One can see that the system (1) defines a B− smooth DF provided conditions

C1)− C7) and the conditions of the continuation theorem are fulfilled.

Definition 3.2. We say that a DF is a map φ : R × D → D, which satisfies the

property I) of Definition 3.1 and the following conditions are valid:

IV ) If x ∈ D is fixed then φ(t, x) ∈ PC(R), and φ(θi, x) ∈ Γ, φ(θi+, x) ∈ Γ̃

for every discontinuity point θi of φ(t, x).

V ) The function φ(t, x) is B− continuous in x ∈ D on [a, b] ⊂ R for every

{a, b} ⊂ R.

Comparing definitions of the B− differentiability and the B− continuity one

can conclude that every B− smooth DF is a DF.
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Example 3.1. Consider the following model for simple neural nets from [3]. We

have modified its form according to the proposed equation (1).

x′1 = x2, x
′
2 = −β2x1, p

′ = −γp+ x1 +B0, if (x(t) 6∈ Γ ∧ t ≥ 0) ∨ (x(t) 6∈ Γ̃ ∧ t ≤ 0),

x1(t+) = x2(t−), x2(t+) = x2(t−), p(t+) = 0, if x(t) ∈ Γ ∧ t ≥ 0,

x1(t−) = x1(t+), x2(t−) = x2(t+), p(t−) = r, if x(t) ∈ Γ̃ ∧ t ≤ 0,

where β,B0 ∈ R are constants, Γ = {(x1, x2, p)| p = r}, Γ̃ = {(x1, x2, p)| p =

0},Φ(x) = p − r, f(x) = (x2, β
2x1,−γp + x1 + B0), J(x) = (x1, x2, r), β, γ, r > 0,

are constants. We assume that G = {(x1, x2, p)|0 < p < r, x2
1 + x2

2
β4 < 1}. In the

system the variable p(t) is a scalar input of a neural trigger and x1, x2, are other

variables. The value of r is the threshold. One can verify that the functions and the

sets satisfy C1)−C7) and the conditions of Theorem 2.2. That is, the system defines

a DF.

Remark 3.1. The extended version of the paper has been submitted to Mathematical

and Computer Modelling.
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Romania, Bucureşti, 1968.
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