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FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE
AND LIMITING TRAJECTORIES

ŞTEFAN MIRICĂ

Abstract. A ”feedback differential system” is defined as a (generally dis-

continuous) parameterized differential inclusion (in particular, differential

equation), that usually appears in the description of the complete solu-

tion of an optimal control problem or a differential game. In this article

one obtains certain invariant characterizations of the uniform limits of two

types of approximate trajectories: the well-known ”Euler polygonal lines”

and the less known ”Isaacs approximate trajectories” suggested by the

natural assumption of the discrete (step-by-step) ”action” of a player in

optimal control and differential games. The main results state that under

very general hypotheses on the data, the limiting Euler and, respectively,

Isaacs-Krassovskii-Subbotin trajectories are Carathéodory solutions of two

distinct associated differential inclusions defined by corresponding ”u.s.c.-

convexified” limits of the original orientor fields. In particular, one provides

a counter-example of a ”conjecture” in Krassovskii and Subbotin(1974) and

one gives a complete proof of the correct variant of this conjecture.

1. Introduction

The aim of this paper is to obtain certain ”invariant” characterizations of

the uniform limits of the well-known ”Euler polygonal lines” in the general theory

of Ordinary Differential Equations (ODE), on one hand and, on the other hand, of

the less known ”Isaacs approximate trajectories” of ”proper” feedback differential
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systems, naturally appearing in the description of the complete solutions of optimal

control problems and differential games.

We recall that the ”limiting Euler trajectories” are frequently used not only

in the general theory of ODE (e.g. Kurzweil(1986)[9]) and differential inclusions

(e.g. Aubin and Cellina(1984)[1]) to prove the existence of classical (Newton or

Carathéodory) solutions but also in the description of corresponding numerical algo-

rithms; in a more general setting of certain types of differential inclusions, the study

of the limiting Euler trajectories has been recently taken-up in Clarke et al(1998)[3].

On the other hand, the limiting ”Isaacs-Krassovskii-Subbotin” trajectories

have been considered first in Krassovskii and Subbotin(1974)[8] in an attempt to

put on a more rigorous basis the rather heuristical approach in Isaacs(1965)[7] which

referred only to the corresponding ”approximate” trajectories; however, Krassovskii

and Subbotin(1974), without mentioning Isaacs’ name, identified ”Isaacs approximate

trajectories” as ”Euler polygonal lines” (which is not true, as the definitions below

show) and, moreover, formulated a ”conjecture” (contradicted by the counterexample

in Remark 4.3 below) according to which these limiting trajectories are Carathéodory

solutions of a certain associated differential inclusion.

The main results of this paper are contained in Sections 3 and 4 below and

show that under some mild hypotheses on the data, these types of limiting trajec-

tories are Carathéodory solutions of certain associated u.s.c.-convexified differential

inclusions which are closely related to concepts introduced by Cesari(1983)[2], Filip-

pov(1988)[5] and Mirică(1992)[10] in different contexts.

As a general idea, we point out that, as in [1], [2], [3], [11], etc., in the

proofs of the main results in Sections 3 and 4 below, we shall use, in a more explicit

manner, a string of arguments based, first, on the ”compactness” [Theorem 0.3.4 in

Aubin and Cellina(1984)[1]] (which may be considered a refinement of the well-known

Arzelà-Ascoli theorem), then the so called Banach-Saks-Mazur Lemma in Functional

Analysis (e.g. Yosida(1974)[15]) and, finally, some arguments from basic Measure

Theory (e.g. Dunford and Schwartz(1958)[4]).
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One may note also that the results in Sections 3 and 4 below may explain

some of the apparent ”anomalies” pointed out in [Clarke et al(1998)[3], Section 4.1.2]

and the role of the usual hypotheses in the general theory of ODE.

The paper is organized as follows: in Section 2 we present the necessary

notations, definitions and preliminary results needed in the sequel and in Section 3

we prove the main result and some comments concerning the characterization of the

limiting Euler(E-) trajectories; in Section 4 we prove in the same way the more com-

plicated analogous results regarding the limiting Isaacs-Krassovskii-Subbotin(IKS)

trajectories.

2. Notations, definitions and preliminary results

In this paper we shall be concerned mainly with a feedback differential

system (actually a ”parameterized differential inclusion”) of the form

x′ ∈ F (t, x) := f(t, x, U(t, x)), x(t0) = x0, t ∈ I = [t0, t1], (2.1)

defined by a non-empty set (of ”control parameters”) U , a parameterized vector field

f(., ., .) : D × U → Rn and a multifunction (”feedback strategy”) U(., .) : D ⊆

R × Rn → P(U) where P(U) denotes the family of all subsets of U ; we note that

in the particular case in which U ⊆ Rn, f(t, x, u) ≡ u one has a ”general” (non-

parameterized) differential inclusion

x′ ∈ F (t, x) := U(t, x), x(t0) = x0, t ∈ I = [t0, t1], (t0, x0) ∈ D (2.2)

while in the case the multifunction U(., .) is either absent or ”reduces” to a point,

U(t, x) ≡ {u0}, for some fixed point u0 ∈ U , the inclusion in (2.1) becomes an

”ordinary differential equation”

x′ = g(t, x) := f(t, x, u0), x(t0) = x0, (t0, x0) ∈ D. (2.3)

In what follows, a ∆ − approximate solution is related to a partition (”division”)

of the interval I = [t0, t1] denoted by ∆ = {τ j ; j ∈ {0, 1, ...k + 1}} where t0 =

τ0 < τ1 < ... τk < τk+1 = t1 and whose ”norm”( or ”mesh size”) is defined by

|∆| := max{τ j+1 − τ j ; 0 ≤ j ≤ k}.
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Definition 2.1. If ∆ = {τ j ; j = {0, 1, ...k + 1}} is a partition of the interval

I = [t0, t1] then x∆(.) ∈ AC(I;Rn) is said to be:

(i) an Euler ∆− approximate solution of (2.1) if there exists a finite subset,

{vj ; j ∈ {0, 1, ...k}} ⊂ Rn such that:

x∆(t0) = x∆(τ0) = x0, vj ∈ F (τ j , x∆(τ j)), j ∈ {0, 1, ...k} (2.7)

x∆(t) = x∆(τ j) + (t− τ j)vj ∀ t ∈ Ij = [τ j , τ j+1]; (2.8)

(ii) an Isaacs ∆−approximate solution if there exists a finite subset, {uj ; j ∈

{0, 1, ...k}} ⊂ U such that the mappings f(., x∆(.), uj) are (Lebesgue) integrable and

satisfy the following relations:

x∆(t0) = x∆(τ0) = x0, uj ∈ U(τ j , x∆(τ j)), j ∈ {0, 1, ...k} (2.9)

x∆(t) = x∆(τ j) +
∫ t

τj

f(s, x∆(s), uj)ds ∀ t ∈ Ij = [τ j , τ j+1]. (2.10)

Remark 2.2. We note first that the mappings x∆(.) in (2.8), (2.10) are

defined ”recurrently” on the sub-intervals Ij = [τ j , τ j+1] ⊂ I, j ∈ {0, 1, ...k}

starting from the initial value x∆(τ0) = x0 and choosing, at each step, a point

vj ∈ F (τ j , x∆(τ j)) (respectively, uj ∈ U(τ j , x∆(τ j))); moreover, on each sub-interval

Ij the mapping x∆(.) in (2.10) is a Carathéodory solution of the O.D.E.

x′(t) = f(t, x(t), uj) a.e.(Ij), j ∈ {0, 1, ...k}, Ij = [τ j , τ j+1] (2.11)

while the corresponding mapping in (2.8) is a piecewise affine mapping with the con-

stant derivative vj ∈ F (τ j , x∆(τ j)) on the sub-interval Int(Ij) = (τ j , τ j+1); one may

note that while an Euler ∆−solution may be defined for general (non-parameterized)

differential inclusions, the Isaacs ∆− solutions in (2.10) are specific to the ”properly

parameterized” differential inclusions in (2.1) since in the case of the general ones in

(2.2), they become Euler ∆− solutions.

Further on, as it is well known, the ”integrability” condition in Def.1(ii)

(which is rather difficult to verify in the general case) is implied by the fact that the

mappings f(., ., u), u ∈ U are Carathéodory vector fields (e.g. [5], [9], [11], etc.); for
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the proof of the main result in Section 3 below we need the following more restrictive

property:

Hypothesis 2.3. The data of the problem (2.1) have the following properties:

(i): U 6= ∅, D = Int(D) ⊆ R×Rn (i.e. is open) and U(., .) : D → P(U) has

non-empty values at each point;

(ii): the mapping f(., ., .) : D×U → Rn is such that there exists a null subset

If ⊂ pr1D such that:

(ii1): the mappings f(., x, u), x ∈ pr2D, u ∈ U are measurable;

(ii2): the mappings f(t, ., u), t ∈ pr1D \ If , u ∈ U are continuous;

(iii): the multifunctions F (., .) := f(., ., U(., .)) and U(., .) are ”jointly” locally

integrably-bounded in the sense that for any compact subset D0 ⊂ D there exists an

integrable mapping c(.) ∈ L1(pr1D0;R+) and a null subset I0 ⊂ pr1D0 such that:

||f(t, x, u)|| ≤ c(t) ∀ (t, x) ∈ D0, t ∈ pr1D0 \ I0, u ∈ U(D0) (2.12)

where U(D0) :=
⋃
{U(s, y); (s, y) ∈ D0}.

One may note that property (iii) is implied by the usual hypothesis accord-

ing to which U is a compact topological space and f(., ., ) is continuous (with re-

spect to all variables); moreover, property (ii) implies the fact that f(., ., u), u ∈ U

are Carathéodory vector fields hence the definition of the Isaacs ∆ − solutions in

Def.2.4(ii) makes sense without the ”artificial” requirement of the integrability con-

dition.

On the other hand, for the study of the limiting Euler-trajectories in Section

3 we need only a simpler ”local boundedness” property of the orientor field F (., .)

(see Th.3.1 below).

In what follows we shall study the corresponding types of ”limiting trajecto-

ries” defined as ”uniform limits” of the approximate trajectories in Def.2.1; we recall

that the ”limiting Euler trajectories” are frequently used not only in the general

theory of ODE (e.g. Kurzweil(1986)[9]) and differential inclusions (e.g. Aubin and

Cellina(1984)[1]) to prove the existence of classical (Newton or Carathéodory) solu-

tions but also in the description of certain numerical algorithms; on the other hand,
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the limiting ”Isaacs-Krassovskii-Subbotin” (IKS- trajectories have been considered

first in Krassovskii and Subbotin(1974)[8] in an attempt to put on a more rigorous

basis the rather heuristical approach in Isaacs(1965)[7] which referred only to the

corresponding ”approximate” trajectories.

Definition 2.4. The continuous mapping x(.) ∈ C(I;Rn) is said to be:

(i): an Euler(E)-trajectory of the problem in (2.1) if there exist a se-

quence of partitions ∆m = {τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N of the interval

I = [t0, t1], the subsets {vj
m; j ∈ {0, 1, ...km}} ⊂ Rn and the corresponding Euler

∆m − solutions, xm(.) := x∆m(.), m ∈ N in (2.7),(2.8) such that:

|∆m| → 0, xm(t) → x(t) uniformly for t ∈ I as m →∞; (2.13)

(ii): an Isaacs-Krassovskii-Subbotin(IKS)-trajectory of the problem (2.1) if

there exist a sequence of partitions ∆m = {τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N of the

interval I = [t0, t1], the subsets {uj
m; j ∈ {0, 1, ...km}} ⊂ U and the corresponding

Isaacs ∆m − solutions, xm(.) := x∆m(.), m ∈ N in (2.9), (2.10) such that the

properties in (2.13) are satisfied.

Note that, in general the uniform limit of xm(.) (in the topology generated

by the norm ‖x(.)‖C := max{‖x(t)‖; t ∈ I} of the space C(I;Rn) of continuous

mappings) need not be absolutely continuous (AC), not even a.e. differentiable; a

sufficient condition for this property is given in the following [compactness theorem

0.3.4 in Aubin and Cellina[1]] which seems to be more suitable than the classical

Arzelà-Ascoli theorem, in the study of Carathéodory-type differential inclusions and

differential equations.

Theorem 2.5 (compactness). Let X be a Banach space, let I ⊂ R be an

interval and let {xm(.)} ⊂ AC(I;X) be a sequence of AC mappings with the following

properties:

(i): for each t ∈ I the subset {xm(t); m ∈ N} ⊂ X is relatively compact;

(ii): there exists an integrable function c(.) ∈ L1(I;R+) such that

‖x′
m(t)‖ ≤ c(t) a.e.(I) ∀ m ∈ N.
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Then there exists a subsequence {xmj (.)} and a mapping x(.) ∈ AC(I;X) such that

(1): xmj
(.) → x(.) uniformly on each compact subset of I;

(2): x′
mj

(.) → x′(.) weakly in the space L1(I;X) of integrable mappings.

One may note that in the case X = Rn, if xm(.) are equally bounded and

property (ii) is satisfied then xm(.) are also uniformly equi-continuous hence one

may apply the Arzelà-Ascoli Theorem but the conclusion in Theorem 2.5 is stronger,

stating not only the fact that the limit is AC but also the weak convergence (in L1)

of the derivatives.

As in the study of many other problems (e.g. [11]), at a certain stage of the

proofs of the main results, we shall use the following important theorem in Functional

Analysis which seems to belong, jointly, to Banach, Saks and Mazur though in some

books and monographs only one, two or no names are mentioned.

Theorem 2.6 (Banach-Saks-Mazur). Let X be a normed space, let X∗

be its dual and let xm, x ∈ X, m ∈ N be such that xm → x weakly i.e. such that

x∗(xm) → x∗(x) ∀ x∗ ∈ X∗.

Then for each m ∈ N there exist the integer im ≥ m and the real numbers,

ci
m ∈ R such that

ci
m ≥ 0,

im∑
m

ci
m = 1 and ‖ym − x‖ → 0 if ym :=

im∑
m

ci
mxi.

For the proof and equivalent statements of this important result we refer to Yosida

[15], to Dunford and Schwartz [4] and to the references therein.

Finally, we shall use also the following result in Measure Theory which is very

often used as a piece of ”Mathematical folklore”.

Theorem 2.7. (Measure Theory). Let X be a Banach space, let I =

[a, b] ⊂ R be a compact interval and let xm(.), x(.) ∈ L1(I;X) be such that xm(.) →

x(.) strongly in L1.

Then there exist a subsequence xmj
(.) such that xmj

(t) → x(t) a.e.(I).

For a proof of this theorem we refer to Theorem 3.3.6 and Corollary 3.6.13

in Dunford and Schwartz [4].
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In what follows ‖.‖ denotes the Euclidean norm on Rn, if r > 0 and x ∈ Rn

then Br(x) := {y ∈ Rn; ‖y−x‖ < r} and if A ⊂ Rn then Int(A), Cl(A), co[A], co[A]

denote the interior, the closure, the convex hull and, respectively, the closed convex

hull of A.

3. Limiting Euler trajectories

In this section we use Theorems 2.5, 2.6, 2.7 to obtain certain ”invariant”

characterizations of the limiting Euler trajectories in Def.2.4(i) and, in particular, of

existence theorems for solutions of upper semicontinuous convex-valued differential

inclusions and differential equations.

Theorem 3.1. If the ”orientor field” F (., .) : D = Int(D) ⊆ R × Rn →

P(Rn) is locally bounded in the sense that for any compact subset D0 ⊂ D there

exists c > 0 such that

‖v‖ ≤ c ∀ v ∈ F (D0) :=
⋃
{F (t, x); (t, x) ∈ D0} (3.1)

and x(.) ∈ C(I;Rn) is an Euler trajectory in the sense of Def.2.4(i) of the differential

inclusion in (2.2) then x(.) is a Carathéodory (AC) solution of the u.s.c.-convexified

differential inclusion

x′ ∈ F co(t, x) :=
⋂
δ>0

co[F ((t− δ, t + δ)×Bδ(x))]. (3.2)

Proof. From Def.2.4(i) it follows that there exist a sequence of partitions ∆m =

{τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N of the interval I = [t0, t1], the subsets

{vj
m; j ∈ {0, 1, ...km}} ⊂ Rn and the corresponding Euler ∆m − solutions, xm(.) :=

x∆m(.),m ∈ N in (2.7),(2.8), hence such that the following relations are satisfied on

the intervals Ij
m = [τ j

m, τ j+1
m ]:

xm(t) = xm(τ j
m) + (t− τ j

m)vj
m, t ∈ Ij

m, vj
m ∈ F (τ j

m, xm(τ j
m)) (3.3)

and such that the properties in (2.13) hold true; obviously, the property in (3.3) is

equivalent with the fact that

x′
m(t) = vj

m ∀ t ∈ (τ j
m, τ j+1

m ), j ∈ {0, 1, ...km}, x(t0) = x0. (3.4)
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On the other hand, since D ⊆ R × Rn is open and x(.) is continuous, there exists

r > 0 and a rank mr ∈ N such that

D0 := {(t, y); t ∈ I, y ∈ Br(x(t)) := Cl(Br(x(t))} ⊂ D (3.5)

(t, xm(t)) ∈ D0 ∀ t ∈ I, m ≥ mr. (3.6)

As already stated, the general idea is to show that Theorems 2.5, 2.6, 2.7 are succes-

sively applicable to the above sequence {xm(.); m ≥ mr} ⊂ AC(I;Rn); to this end

we note that from the fact that (τ j
m, xm(τ j

m)) ∈ D0 ∀ m ≥ mr, j ∈ {0, 1, ...km} and

from the properties in (3.1) and (3.4) it follows that

‖x′
m(t)‖ ≤ c ∀ t ∈ I \ {τ j

m; j ∈ {0, 1, ...km}, m ≥ mr. (3.7)

Therefore Th.2.5 is applicable to the sequence {xm(.); m ≥ mr} hence taking possibly

a subsequence, without loss of generality, we may assume that x(.) ∈ AC(I;Rn) and

that x′
m(.) → x′(.) weakly in L1(I;Rn); next, we apply first Th.2.6 to obtain the

existence of the non-negative numbers ci
m ≥ 0 and of the natural numbers im ≥ m

such that
im∑
m

ci
m = 1, ‖

im∑
m

ci
mx′

i(.)− x′(.)‖L1 → 0 as m →∞ (3.8)

while from Th.2.7 it follows that, taking possibly a subsequence, one may assume that

there exists a null subset I2 ⊂ I such that:

ci
m ≥ 0,

im∑
m

ci
m = 1, ym(t) :=

im∑
m

ci
mx′

i(t) → x′(t) ∀ t ∈ I \ I2. (3.9)

From (2.13) it follows now that for each δ > 0 there exists a rank mδ ≥ mr such that

∀ t ∈ I, m ≥ mδ ∃j = j(t, m) ∈ {0, 1, ...km} such that (τ j
m, xm(τ j

m)) ∈ (t− δ, t + δ)×

Bδ(x(t)) which, in view of (3.4) and of the fact that vj
m ∈ F (τ j

m, xm(τ j
m)) implies:

x′
m(t) ∈ F ((t− δ, t + δ)×Bδ(x(t)) ∀ t ∈ I \ {τ j

m; j ∈ {0, 1, ...km + 1}},m ≥ mδ

and which, in turn, in view of (3.9), implies the fact that x(.) is a Carathéodory

solution of the differential inclusion in (3.2).

In the particular case of locally bounded but otherwise arbitrary vector fields

in (2.3) we obtain immediately the following result.
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Corollary 3.2. If g(., .) : D = Int(D) ⊆ R×Rn → Rn is a vector field that is

locally bounded in the sense of (3.1) and x(.) ∈ C(I;Rn) is an Euler-trajectory of

the ODE in (2.3) in the sense of Def.2.4(i) then x(.) is a Lipschitzian (Carathéodory)

solution of the differential inclusion

x′ ∈ gco(t, x) :=
⋂
δ>0

co[g((t− δ, t + δ)×Bδ(x))]. (3.10)

In particular, if g(., .) is continuous (with respect to both variables) then x(.) is a

continuously differentiable (”Newton’s”) solution of the same equation.

Remark 3.3. One may note that the statement in Cor.3.2 is much weaker

than the corresponding one in Cor.4.2 below for IKS-trajectories of ODE and simple

examples (e.g. [Clarke et al.[3], Section 4.1.2]) show that it cannot be significantly

improved; according to these examples, even if g(., .) is continuous, an E-trajectory

may not be a C-solution of (2.3) and, on the other hand, a Newton (i.e., of class C1)

solution may not be an E-trajectory. The only case in which an equivalence analogous

to the one in Cor.4.2 may hold seems to be that of the ”Peano-Lipschitz vector fields”,

g(., .), which are continuous with respect to both variables and locally-Lipschitz with

respect to the second one or, slightly more general, that have the uniqueness property

in the theory of ODE.

4. Limiting Isaacs-Krassovskii-Subbotin trajectories

The main result of this section is the following theorem giving the correct

variant of the ”conjecture” in [Krassovskii and Subbotin (1974)[8], Section 2.7].

Theorem 4.1. If Hypothesis 2.3 is satisfied and x(.) ∈ C(I;Rn) is a IKS-

trajectory in the sense of Def.2.4(ii) then x(.) is a Carathéodory solution of the u.s.c.-

convexified differential inclusion

x′ ∈ F co
u (t, x) :=

⋂
δ>0

co[
⋃
{f(t, y, U(s, z)); y ∈ Bδ(x),

(s, z) ∈ (t− δ, t + δ)×Bδ(y)}].
(4.1)

Proof. From Def.2.4(ii) it follows that there exist a sequence of partitions ∆m =

{τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N , of the interval I = [t0, t1], the subsets {uj

m; j ∈
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{0, 1, ...km}} ⊂ U and the corresponding Isaacs ∆m−solutions, xm(.) := x∆m(.),m ∈

N in (2.9),(2.10), hence such that:

xm(t0) = xm(τ0) = x0, uj
m ∈ U(τ j

m, xm(τ j
m)), j ∈ {0, 1, ...km} (4.2)

xm(t) = xm(τ j
m) +

∫ t

τj
m

f(s, xm(s), uj
m)ds ∀ t ∈ Ij

m = [τ j
m, τ j+1

m ] (4.3)

and such that the properties in (2.13) hold true; as already noted, the property in

(4.3) is equivalent with the fact that there exists a null subset, I1 ⊂ I, I1 ⊃ {τ j
m; m ∈

N, j ∈ {0, 1, ...km + 1} such that:

x′
m(t) = f(t, xm(t), uj

m) ∀ t ∈ (τ j
m, τ j+1

m ) \ I1, x(t0) = x0. (4.4)

On the other hand, since D ⊆ R×Rn is open and x(.) is continuous (hence x(I) ⊂ Rn

is compact), there exist r, mr > 0 such that (3.5) and (3.6) hold.

As in the proof of Th.3.1, the general idea is to show that Theorems 2.5, 2.6,

2.7 are successively applicable to the above sequence {xm(.); m ≥ mr} ⊂ AC(I;Rn);

to this end we note that from Hypothesis 2.3(iii) it follows that for the compact subset

D0 ⊂ D in (3.5) there exists an integrable function c(.) ∈ L1(I;R+) and a null subset

I0 ⊂ I = pr1D0 such that (2.12) holds; further on, since from (3.6) it follows that,

in particular, (τ j
m, xm(τ j

m)) ∈ D0, hence uj
m ∈ U(τ j

m, xm(τ j
m)) ⊂ U(D0), from (2.12)

and (4.4) it follows that:

‖x′
m(t)‖ ≤ c(t) ∀ t ∈ I \ (I0 ∪ I1), m ≥ mr. (4.5)

Therefore Th.2.5 is applicable to the sequence {xm(.); m ≥ mr} hence taking possibly

a subsequence (without loss of generality), we may assume that x(.) ∈ AC(I;Rn) and

also that x′
m(.) → x′(.) weakly in L1(I;Rn); next, we apply Th.2.6 to obtain the

existence of the non-negative numbers ci
m ≥ 0 and of the natural numbers im ≥ m

such that (3.8) holds while from Th.2.7 it follows that, taking possibly a subsequence,

one may assume that there exists a null subset I2 ⊂ I, I2 ⊃ I1, such that (3.9) holds.

We shall prove now that for each δ > 0 there exists a rank mδ ≥ mr such

that ∀ t ∈ I \ I1, m ≥ mδ one has:

x′
m(t) ∈

⋃
{f(t, xm(t), U(s, z)); (s, z) ∈ (t− δ, t + δ)×Bδ(xm(t))} (4.6)
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which, in view of (2.13) and (3.9), implies in the following way the fact that x(.) is a

Carathédory solution of the differential inclusion in (4.1): from (2.13) it follows that

for δ > 0 there exists a rank mδ ≥ mr such that xm(t) ∈ Bδ(x(t)) ∀ t ∈ I, m ≥ mδ

hence from (4.6) it follows that for each δ > 0, t ∈ I \ I1 one has:

x′
m(t) ∈

⋃
{f(t, y, U(s, z)); y ∈ Bδ(x(t)), (s, z) ∈ (t− δ, t + δ)×Bδ(y)}

which, in view of (3.9), implies the fact that x(.) is a C-solution of (4.1).

To prove (4.6) we use first the well-known absolute continuity of the Lebesgue

integral, J 7→
∫

J
c(s)ds to obtain that for δ > 0 there exists ηδ > 0 such that∫

J

c(s)ds < δ ∀ J ⊂ I, µ(J) < ηδ;

next, we use the property in (2.13) to obtain the existence of a rank mδ ≥ mr such

that

|∆m| < min{δ, ηδ}, ‖xm(t)− x(t)‖ < δ ∀ m ≥ mδ, t ∈ I

hence, in particular, such that:∫ t

τj
m

c(s)ds < δ, t− τ j
m ≤ |∆m| < δ ∀ t ∈ Ij

m = [τ j
m, τ j+1

m ].

Therefore from (3.3), (3.4) and (4.5) it follows that:

‖xm(t)− xm(τ j
m)‖ ≤

∫ t

τj
m

c(s)ds < δ, ∀ t ∈ Ij
m = [τ j

m, τ j+1
m ]

hence (τ j
m, xm(τ j

m)) ∈ (t− δ, t + δ)×Bδ(xm(t)) and the relation in (4.6) follows from

(3.4) and from the fact that uj
m ∈ U(τ j

m, xm(τ j
m)).

In the particular case of the Carathéodory ODE in (2.3) we obtain the fol-

lowing result.

Corollary 4.2. If g(., .) : D = Int(D) ⊆ R × Rn → Rn is a Carathéodory

vector field in the sense of Hypothesis 2.3(ii),(iii) then x(.) ∈ AC(I;Rn) is an IKS-

trajectory of the ODE in (2.3) iff it is a Carathéodory solution of the same equation.

Proof. If x(.) ∈ AC(I;Rn) is a Carathéodory(C) solution of (2.3) then,

obviously, for any partition ∆ of the interval I it is an Isaacs ∆− solution hence x(.)

is an IKS-trajectory in the sense of Def.2.4(ii).
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Conversely, if x(.) ∈ C(I;Rn) is a IKS-trajectory then according to Th.3.1

it is a C-solution of the differential inclusion in (4.1) which, in this case, is defined by

the orientor field

F co
u (t, x) = (g(t, .))co(x) :=

⋂
δ>0

co[g(t, Bδ(x))];

finally, since g(t, .) is assumed to be continuous for t ∈ pr1D \ Ig for some null subset

Ig ⊂ pr1D, it is easy to see that

F co
u (t, x) = (g(t, .))co(x) = {g(t, x)} ∀ t ∈ pr1D \ Ig, x ∈ pr2D

hence x(.) is a C-solution of (2.3).

Remark 4.3. We recall that the ”conjecture” in [Krassovskii and Subbotin

(1974)[8], Section 2.7] (in the case of the single-valued feedback strategies U(., .) =

{u(., .)}), states that ”using standard tools in the theory of ODE one may prove that

any ”perfect” (i.e. IKS) trajectory is a ”generalized” trajectory in the sense that it

is a Carathéodory solution of the associated differential inclusion” in (3.2).

Besides the fact that Theorems 2.5, 2.6, 2.7 above (that have been used

essentially in the proof of Th.3.1, 4.1) may hardly be taken as ”standard tools in

the theory of ODE”, the conjecture may be considered justified only in the case the

multifunctions in (4.1) and (3.2) are related as follows: F co
u (t, x) ⊆ F co(t, x) ∀ (t, x) ∈

D as it is the case of the vector fields g(., .) in Cor.4.2, since one may write successively:

F co
u (t, x) ≡ g(t, .)co(x) ≡ {g(t, x)} ⊆ F co(t, x) ≡ gco(t, x); in the general case, the

orientor fields in (4.1) and (3.2) may not be related in this way and very simple

examples show that Krassovskii-Subbotin conjecture is false. For instance, if d(.) is

the well-known ”Dirichlet function”

d(t) :=

 1 if t ∈ Q

0 if t ∈ R \Q

and f(t, x, u) ≡ d(t) + u, U(t, x) ≡ {1− d(t)} ⊂ U := [0, 1] then obviously F (t, x) ≡

F co(t, x) ≡ {1} while the convexified u.s.c.-limit in (4.1) is given by: F co
u (t, x) ≡

d(t) + [0, 1]; therefore, the only C-solution of (3.2) that satisfies x(0) = 0 ∈ R is

the function x(t) = t, t ∈ I = [0, 1] while taking a sequence {∆m} of partitions of
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I = [0, 1] such that τ j
m ∈ Q it follows that x0(t) ≡ 0 is an IKS-trajectory of (2.1)

that it is not a C-solution of (3.2).
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