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A STUDY ON METRICS AND STATISTICAL ANALYSIS

DĂNUŢ MARCU

Abstract. The purpose of this article is to introduce some classes of met-

rics, to describe their importance to mathematics and the sciences, to state

the basic theorems concerning these classes, to state some new theorems

which we have obtained by using topological methods, and even provide a

proof here and there. But, the main purpose, is to state many of the open

problems around these concepts and to show how much of this subject

might be understood by topological means.

1. Introduction

Everyone is familiar with the triangle inequality. This inequality played a

major role in the definition of a topological space.

ρ(a, b) ≤ ρ(a, c) + ρ(b, c)

Still familiar to topologists is the ultrametric inequality.

ρ(a, b) ≤ max{ρ(a, c), ρ(b, c)}

But there are more inequalities of importance to mathematics which topologists are

not familiar with. For example, there is the four-point inequality,

ρ(a, b) + ρ(c, d) ≤ max{ρ(b, c) + ρ(a, d), ρ(a, c) + ρ(b, d)}

and there is the pentagon inequality

ρ(a, b)+ ρ(c, d)+ ρ(c, e)+ ρ(d, e) ≤ ρ(a, c)+ ρ(a, d)+ ρ(a, e)+ ρ(b, c)+ ρ(b, d)+ ρ(b, e)
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and there is the negative-type inequality

ρ(a, b) + ρ(b, c) + ρ(a, c) + ρ(d, e) + ρ(d, f) + ρ(e, f)

≤ ρ(a, d) + ρ(a, e) + ρ(a, f) + ρ(b, d) + ρ(b, e) + ρ(b, f) + ρ(c, d) + ρ(c, e) + ρ(c, f)

All of these inequalities turn out to be important in various parts of mathematics

and, especially, in the applications of mathematics to the sciences.

2. Statistics

The standard definition states that multivariate statistical analysis and, es-

pecially, that more applied part of multivariate statistical analysis which is called

multivariate data analysis, is concerned with data collected on several dimensions of

the same individual. A cursory examination of the literature of that subject reveals

that a major concern, worthy of a few chapters in a typical textbook, is the following

situation and resulting problem: For each of n objects, each of k tests is performed

with a result which might be a real number. This gives us an n× k matrix. We wish

to combine this test data and produce an n × n matrix of non-negative reals which

measures the “similarity” or “dissimilarity” of the objects so far as their test results

indicate. If the tests have been designed to give a reasonable notion of similarity,

then this similarity matrix usually satisfies the axioms of a metric space. We wish

to determine what kind of distance concept has been isolated, that is, what kind of

metric space has been constructed.1 Of course, with real data, things are not as sim-

ple as we have described. In most cases, the data has to be transformed, some data

is missing and has to be reconstructed and the data has error or even spurious entries

and has to be approximated. Only then can the data be represented in some fashion

which makes it possible to use our human facilites to understand this data. So, before

analysing distance data, we need some means of classifying metric spaces and some

compendium of reasonable representations or embeddings.

1This topic is a huge one. There are many textbooks devoted to the various aspects of this problem. A

bibliography listing only articles which appeared up to 1975 has 7530 entries.
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3. Kinds of Metrics

Here is a list of the basic kinds of metrics:

• 1. ultrametric

• 2a. L2-embeddable

• 2b. four-point property

• 3. L1-embeddable

• 4. hypermetric

• 5. spherical

• 6. negative-type

• 7. one positive eigenvalue

• 8. L∞-embeddable

Each property implies those properties listed below it, except that 2a. does not imply

2b.

The purpose of this article is to introduce these classes of metrics, to describe

their importance to mathematics and the sciences, to state the basic theorems con-

cerning these classes, to state some new theorems which we have obtained by using

topological methods, and even provide a proof here and there. But, the main purpose,

is to state many of the open problems around these concepts and to show how much

of this subject might be understood by topological means.

4. Ultrametrics

Ultrametric spaces are well-known to topologists and perhaps even better

known to number theorists and analysts. K. Hensel invented the p-adic numbers

in 1897. These numbers carry a natural ultrametric structure and there are now

textbooks on “Ultrametric Calculus” and “Non-Archimedean Functional Analysis”.

A closely related topic which has attracted attention of many topologists is spherical

completeness. The ultrametric inequality was formulated at least as early as 1934 by

Hausdorff, but the term ultrametric was coined only in 1944 by M. Krasner. In 1956,
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deGroot characterized the ultrametric spaces, up to homeomorphism, as the strongly

zero-dimensional metric spaces.2

But, questions at a topological level of generality, remain open. It does not

seem to be known which non-metric spaces are “essentially” ultrametric:

Problem 1. Characterize those topological spaces X such that, for every continu-

ous pseudometric ρ on X, there is a continuous ultra-pseudometric σ on X which

generates a larger topology.

Ultrametric spaces have emerged in the last fifteen years as a major concern

in statistical mechanics, in neural networks and in optimization theory. The history

of this emergence is quite interesting.

In 1984, Mezard, Parisi, Sourlas, Toulouse and Virasoro published an article

on the mean-field theory of spin glasses in which they established that the distribu-

tion of “pure states” in the configuration space is an ultrametric subspace. Within a

few years, it was shown that the “graph partitioning problem” in finite combinatorics

could be “mapped onto” the spin glass problem and thus that the solution space for

this problem also has an ultrametric structure. S. Kirkpatrick then found numeri-

cally that the solutions for certain travelling salesman problems3 seem to scatter in

an ultrametric fashion. J. P. Bouchaud and P. Le Doussal have conjectured that,

in optimization problems in which “the imposed constraints cannot all be satisfied

simultaneously, the optimal configurations (i.e., those which minimize the number

of unsatisfied constraints) spread in an ultrametric way in the configuration space”.

These kinds of problems are known as frustrated optimization problems.

No results of this kind have actually been proven, except in special classes

of spin glasses. All other indications are numerical or by reduction. It would be of

major significance to many fields to show that this phenomenon occurs under some

general circumstances.

2Nyikos and Purisch have extensively investigated the relationship between ultrametrics and generalized

metrics and orderability
3Is there an infinitary version of the travelling salesman problem? Examples might be “When do metric

spaces admit space-filling curves of finite length?” or “When do they admit ε-dense curves of finite length for each

ε > 0?”

46



A STUDY ON METRICS AND STATISTICAL ANALYSIS

Problem 2. Give some reasonable conditions on non-negative continuous real-valued

functions {fi : i < n} on a metric space X so that, if K is minimal for Y = {x ∈ X :∑
{fi(x) : i < n} = K} non-empty, then Y is ultrametric. Formulate this question

more accurately.

A recent and effective strategy in handling optimization problems is to use

simulated annealing and random walks to find global solutions. In problems where the

local solutions have an ultrametric structure, it is therefore essential to understand

random walks on ultrametric spaces. There has been much work already on different

ways in which to define such random walks.

There are, undoubtedly, quite general theorems which show that the natural

metric on sufficiently few independent stochastic processes which are nontrivial on

sufficiently few of sufficiently many coordinates is arbitrarily close to being ultramet-

ric. It seems likely that, to obtain a statement and proof of such a theorem, we should

state and prove an infinite version first.

Problem 3. Let {Rx : x ∈ X} be a finite set of independent stochastic processes

acting on Rω, independently of the coordinates, so that

(∀x ∈ X)(∀t ∈ R)Probt(|{n ∈ ω : Rx(n) 6= 0}| < ω) = 1

Let d be the metric defined on X by d(x, x′) = E(L1(|Rx − Rx′ |)) for a suitable

measure on ω. Prove that d is an ultrametric.

Problem 4. Can an asymptotic finitary version of problem 3 be stated and proved?

Can the assumptions be made sufficiently reasonable so as to show that the numerical

evidence for ultrametricity of phylogenetic trees in evolution is inevitable?

In examining the numerical evidence for ultrametricity, and in proving the-

oretical results about the tendency of finite data to approach ultrametricity, there is

a need for answering a fundamental question: How can we measure how far a given

metric is from being an ultrametric?

The main method used in spin glasses for answering this question is based on

the following:
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Proposition 1 (Jardine, 1967). If ρ is a metric on a finite set, then there is an

ultrametric τ which minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among those τ such

that (∀x, y ∈ X)τ(x, y) ≤ ρ(x, y).

This analog of the subharmonic in potential theory which is called the sub-

dominant ultrametric can be quite pathological. R. Rammal, G. Toulouse and M.

Virasoro in their article Ultrametricity for Physicists ask whether there are optimal

lp ultrametric approximations for a given metric where 1 ≤ p ≤ ∞ (and specifically

ask it for 1 and ∞). Noting that the proposition can be viewed as an optimal l∞

ultrametric approximation among those ultrametrics below a given metric, we have

obtained the next result:

Theorem 1. If ρ is a metric on a finite space, then there is an ultrametric τ which

minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among all ultrametrics τ .

There may be several choices for the ultrametric in theorem 1 but perhaps

this duplication only occurs in a trivial way.

Problem 5. Is there, up to some kind of manipulation, always an unique ultrametric

τ which minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among all ultrametrics τ?

But, our construction in theorem 1, seems to take exponential time, while

Jardine’s only takes polynomial time.

Problem 6. Is there a polynomial algorithm for computing an ultrametric τ which

minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among all ultrametrics τ?

Krivanek showed that computing the closest ultrametric above a given metric

is NP-complete.

Problem 7. Show that the subdominant ultrametric can be quite pathological. That

is, show that the subdominant ultrametric of a given metric ρ can be arbitrarily close

to zero, even when there is an ultrametric quite close to ρ in the supremum norm.

Jardine’s theorem was extended by Bayod and Martinez-Maurica, in 1990, to

totally disconnected locally compact spaces. But, they failed to obtain a characteri-

zation.
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Problem 8. Characterize those metric spaces which have a subdominant ultrametric.

Problem 9. Can theorem 1 be extended to a reasonable class of infinite metric spaces?

Returing to the problem of Rammal, Toulouse and Virasoro:

Problem 10. If ρ is a metric on a finite (or arbitrary) set, then is there an ultrametric

τ which minimizes
∑
{|ρ(x, y) − τ(x, y)| : x, y ∈ X} among all ultrametrics τ? How

does one construct τ?

Problem 11. Which metric spaces have an (uniformly) equivalent metric ρ for which

there is an ultrametric τ such that
∑
{|ρ(x, y)− τ(x, y)| : x, y ∈ X} is finite?

It would be quite useful to associate, to each metric, an ultrametric which is

somehow derived from it in a natural way. But, this seems unlikely.

Problem 12. Let the family of all metrics on a (finite, countable or arbitrary) set

X be equipped with an lp metric. Is there a continuous retraction of metrics onto

ultrametrics?

Note that when p = ∞, this problem is entirely topological.

Ultrametric spaces can be embedded in linearly ordered spaces, but this is not

an isometric embedding. To provide an isometric representation, we must use another

device, well-known to natural scientists as a dendrogram (see p. 769 of Rammal). This

method is equally valid for infinite spaces.

5. Additive Trees

The representation of ultrametrics by dendrograms leads one to consider a

more general kind of diagram called an additive tree in the social sciences literature or

a phylogenetic tree (this term has many inexact definitions) in the biological literature.

Suppose (V,E) is a tree (a graph without cycles or loops) in which each edge has an

“weight” which is a non-negative real number. The distance between any two vertices

x, y ∈ V is defined to be the sum of the weights of the edges which make up the

unique minimal path from x to y. It is an exercise in graph theory to show that this

distance is a metric which satisfies the four-point property.

Theorem 2. Any ultrametric space satisfies the four-point property.
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In 1971, Bunemann showed that, in fact, any metric on a finite set satisfying

the four-point property could be represented as the vertices of a graph equipped with

this “path distance”.

Definition 1. An R-tree is an (uniquely) arcwise connected metric space in which

each arc is isometric to a subarc of the reals.

In 1985, Mayer and Oversteegen constructed an universal R-tree of a given

weight. This construction allows us to prove that the path metric or intrinsic metric

on an R-tree satisfies the four-point condition and that, conversely, any metric space

satisfying the four-point condition can be represented as a set of points in an R-tree.4

Indeed, the concept of an additive tree may be valuable for arbitrary com-

pletely regular spaces:

Problem 13. Characterize those topological spaces X such that, for every continuous

pseudometric ρ on X, there is a continuous pseudometric σ on X with the four-point

property which generates a larger topology.

Any linearly ordered connected compactum satisfies problem 13.

This representation by additive trees is not, by any means, only a theoret-

ical concern. It is an useful way of representing data which satisfies the four-point

condition (see p. 395 of Shepard). Note that this is the right diagram for repre-

senting evolution in which rates of evolution may be different for different species.

Dendrograms assume that the rates are uniform for all species.

Additive trees are obviously easy to interpret. A topologist might ask whether

one can use the intrinsic metric of more general spaces to represent metric spaces of

a broader kind. The answer is yes.

Proposition 2. Any separable metric space can be represented as a subset of a sub-

space of R3 equipped with the intrinsic metric.

4Rudnik and Borsuk have asked whether there is an one-dimensional subset X of R2 in which every two

points is joined by an arc of finite length and in which every intrinsic isometry in R2 is an isometry.
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But, this proposition shows by its strength, its uselessness. We must keep in

mind that, to be useful, a representation must take advantage of human facilities.5

Problem 14. Characterize those metric spaces which can be represented as a subset

of a (simply connected) continuum in R2 with the intrinsic metric.

For example, any ultrametric space, such as K5 with the graph metric,6 can

be so represented but K(3, 3) cannot be so represented.

Problem 15. Is there a version of Kuratowski’s test for planarity of graphs which

answers problem 14 for graph metrics? That is, is there a finite list of “forbidden”

graphs?

While testing a metric for ultrametricity requires testing each set of three

points (and thus can be done in O(n3) computing time), testing a metric for the

four-point condition seems to require testing each set of four points and that would

require O(n4) time. But, there is a beautiful way of converting additive trees into

ultrametrics.

Definition 2. If ρ is a metric on a set X and v ∈ X and c is an appropriate constant,

then, for each x, y ∈ X, define δ(x, y) = c + ρ(x, y)− ρ(x, v)− ρ(y, v). δ is the Farris

transform of ρ.

Proposition 3 (Farris, 1970). δ is an ultrametric if and only if ρ satisfies the

four-point condition.

This theorem is not hard to prove: it just requires some manipulation. Of

course δ and ρ do not generate the same topology even if we choose c carefully.

But, Farris’ lemma is quite useful. We see immediately that we can test the

four-point condition in just O(n3) time. Actually, testing ultrametricity and thus the

four-point condition can even be done in O(n2 log n) time.

Problem 16. Which metric spaces can be represented up to uniform equivalence by

a subset of a space (or an R-tree) with the intrinsic metric and finite total length?

5But, despite this, many articles in the optimization literature ask for minimizing the total length of a

graph which represents a given finite metric space. This should also be explored for infinite metric spaces.
6Any connected graph has a graph metric which is the largest metric in which the distance between any

two vertices which are joined by an edge is 1
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6. L1-Embeddable Metrics and their Decompositions

A metric space (X, ρ) where X is finite is said to be l1-embeddable if we can

embed X isometrically into l1.

Do such metric spaces occur in nature? Is this class useful for statistical

analysis? It is often true that real-life estimates of similarity are obtained by forming

a linear combination of various criteria. Such estimates, such metrics are precisely

the L1-embeddable metrics ! Let us make this exact.

Definition 3. Let (X,M, σ) be a measure space. For A,B ∈ M, define ρ(A,B) =∫
A4B

dσ. We call ρ L1-embeddable.

Since we use integration, we are restricted to estimating similarity by linear

combinations of various criteria. But, this still allows us to represent a broad range

of metrics.

Proposition 4. Let ρ be a metric on a finite set. Then, ρ is l1-embeddable if and

only if ρ is L1-embeddable.

Theorem 3. If a metric ρ on X satisfies the four-point-condition, then ρ is L1-

embeddable.

Proof. Represent (X, ρ) by a subset of an R-tree Y with the intrinsic metric. Choose

v ∈ X. For each x ∈ X, let Ax be the unique shortest path in Y from x to v. Let

M be the set of all Borel sets of Y . Let µ be the measure which assigns to each

Borel set B the sum of the lengths of all disjoint families of paths in B. Let f be the

constant one function. Now, the intrinsic metric between x and y coincides with the

L1 metric on (Y,M, σ).

In the analysis of statistical data, it is not only important to recognize L1-

embeddable distances but also to be able to decompose distance data into an

L1-combination of more primitive distances. That is, we want to be able to carry

out “linear decompositions” whenever this is possible and to identify when this is

not possible.
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Definition 4. Suppose (X, ρ) is a metric space. If there are metric spaces {(Xi, ρi) :

i ∈ I} and a one-to-one map π : X →
∏
{Xi : i ∈ I} such that (∀x, y ∈ X)ρ(x, y) =∑

i∈I |π(x)(i)− π(y)(i)| and if {π(x)(i) : x ∈ X} = Xi, then we say π is a decompo-

sition (X, ρ) as a subdirect L1-product of metric spaces.

This is motivated by the important existence of subdirect representations in

algebra.

Theorem 4. Every metric space can be decomposed in a “maximal” manner as a sub-

direct L1-product of subsets of the reals and one more irreducible metric space. Every

L1-embeddable metric space is decomposed completely into a subdirect L1-product of

subsets of the reals.

Proof. Construct π, inductively, on an well-ordered set I.7 If this has been

done on an initial segment J ⊂ I and i is the least element of I − J , then de-

fine ρ∗(x, y) = ρ(x, y) −
∑
{|π(x)(i) − π(y)(i)| : i ∈ J} and let Σ = {σ ∈ RX :

ρ∗ − σ satisfies the triangle inequality } be partially ordered by defining σ ≤ σ′ if,

for all x, x′ ∈ X, σ(x, x′) ≤ σ′(x, x′). Choose a maximal σ ∈ Σ and define, for each

x ∈ X, π(x)(i) = σ(i).

Problem 17. Is there a “maximal” decomposition of metric spaces as a subdirect

L1-product of additive trees (or Hilbert spaces) and one more irreducible metric space

so that every additive tree (or Hilbert space) remains its unique factor?

The notion of L1-decomposition is well-motivated by the central importance

of “dimension reduction” in multivariate data analysis. In his influential textbook,

Kshirsagar said “The aim of the statistician undertaking multivariate analysis is to

reduce the number of variables by employing suitable linear transformations ... thus

reduces the dimensionality of the problem.” Reasonable decompositions accomplish

this by removing the interaction between coordinates.

Problem 18. Are there reasonable Lp decompositions for 1 < p ≤ ∞?

7The reals themselves can be decomposed into two copies of the reals, namely as the line y = x, and

this is why we require an well-ordering of the factors. With a restriction to integer-valued metrics, this is no longer

an issue.
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A more useful L1-decomposition would do more and break down the remain-

ing irreducible factor in theorem 4 into an L1-product of other irreducible factors

whenever possible. We are able neither to prove such a theorem or even to formulate

this accurately. The criterion by which such a decomposition should be judged is that

it should have as a corollary the following result of R. L. Graham and P. M. Winkler

and reported in Proc. Nat. Acad. Sci. 81 (1984) 7259.

Theorem 5 (Graham, Winkler). Any finite graph can be canonically embedded

isometrically into a maximum cartesian product of irreducible factors.

The existence of the decomposition by subdirect products for varieties is a

true theorem of universal algebra but, this is not a variety and so this seems to be of

no help.

The general problem of identifying L1-embeddability turns out to be signif-

icant in operations research. The problem of multicommodity flows is set in a graph

in which each edge has a capacity and a demand. We seek a flow on the edges of the

graph so that flow on each edge meets demand and does not exceed capacity. The

so-called Japanese theorem of 1971 states that a capacity and demand are feasible i.e.,

can be met if there is a metric ρ on the vertices of the graph so that (c−r)ρ ≥ 0. The

celebrated Ford-Fulkerson theorem in operations research is just this theorem in the

special and tractable case of single commodity flows in which the demand occurs on a

single edge. Usually, the Ford-Fulkerson condition is not sufficient when the demand

is more complicated. However, Lomonosov showed in 1978 that this condition is still

sufficient when the demand lies on an L1-embeddable subgraph.

7. Graphs and Hamming Distance

Indeed, theorem 5 illustrates the intimate connection between L1-

embeddability and Hamming distance. If we use factors in which all non-zero dis-

tances are 1 and a counting measure, then the L1-distance is precisely the Hamming

distance. This Hamming distance is useful in estimating distances between binary
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strings, since error-correcting codes can be designed which do nothing more than re-

place a string with the “closest” string of a certain kind. Although Avis showed that

any finite L1-embeddable metric space embeds in a “weighted” hypercube, it is not

true that an integer-valued L1-embeddable metric can be embedded in the hypercube

2κ with the Hamming distance.

Problem 19. Give necessary and sufficient conditions for an integer-valued (L1-

embeddable) metric to be embeddable in 2κ with the Hamming distance.

For example, a necessary condition is that triangles must have even perimeter.

There is a huge literature on graphs which can be embedded in hypercubes

and metrics which can be embedded in graphs8, but this beautiful theory carries us

too far away from our topic.

8. Compactness and L∞-Embeddable Metrics

A classical result of Banach and Mazur, published in 1932, states that any

separable metric space can be isometrically embedded in L∞(κ) when κ is the con-

tinuum. But, more is true. Suppose (X, d) is a metric space. Fix a ∈ X and define

an isometric embedding π of X into C∗(X) ⊂ L∞(|X|) by defining π(x) by setting

π(x)(x′) = d(x, x′)− d(a, x′).

Theorem 6 (Banach, Mazur; 1932). Any metric space can be isometrically em-

bedded in L∞(κ) for sufficiently large κ.

This theorem, surprisingly, is essentially finitary.

Theorem 7. If every finite subset of a metric space X is L∞-embeddable, then X is

L∞-embeddable.

Proof. Define, for each finite F ⊂ X, E(F ) to be the set of all mappings φ from

X into Rκ which are isometric when restricted to F and achieve the supremum, for

any pair, on a coordinate specifically assigned to that pair. These form a centred

family of closed sets. If we restrict ourselves to maps which, for some x ∈ X, satisfy

8Djoković characterized graphs that can be embedded into hypercubes in 1973.
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φ(x) ≡ 0, then each E(F ) is a subset of a fixed compact set and so we have a nonempty

intersection.9

This leads us to the three basic compactness problems for L∞-embeddable

(or L1-embeddable, or Lp-embeddable) metrics.

• If every finite subset of a metric space X can be embedded in l∞ (or l1,

or lp), then must X be embeddable in some L∞ (or L1, or Lp)?

• If n ∈ ω, then what is the minimal kn ∈ ω (if it exists) such that any (l1-

embeddable, lp-embeddable) finite metric space of size n can be embedded

in lkn
∞ (lkn

1 , lkn
p )?

• If n ∈ ω, then what is the minimal kn ≤ ω (if it exists) such that any

metric space which cannot be embedded in ln∞ (ln1 , lnp ) has a subspace of

size kn which also cannot be embedded in ln∞ (ln1 , lnp )?

For the first of these problems, Witsenhausen showed that, if every finite subset of a

metric space X is embeddable in l1, then X is embeddable in some L1. Results of

Yang and Zhang show that, if every finite subset of a metric space X is embeddable

in l2, then X is embeddable in some L2. The situation for Lp seems to be unclear:

Problem 20. If every finite subset of a metric space X can be embedded in lp, then

must X be embeddable in some Lp?

Problem 21. Find a general compactness theorem which implies that the solution to

the first compactness problem is positive for all p.

For the second problem, Schoenberg noted in 1938 that, although the con-

struction in the proof of theorem 6 above seems to require n coordinates, we can omit

one coordinate without difficulty. This shows that kn ≤ n − 1 for l∞. Wolfe showed

that, in fact, kn ≤ n − 2 for l∞. Witsenhausen has obtained the lower and upper

bounds n− 2 ≤ kn ≤ n(n− 1)/2 for l1 and, later, Ball showed that kn ≤ n(n− 1)/2

for any lp. But, none of these results solve the problem completely:

9Of course, Lp might not be locally compact but this is irrelevant. We work in the Tychonoff product

topology.
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Problem 22. If n ∈ ω, then what is the minimal kn ∈ ω (if it exists) such that any

l1-embeddable finite metric space of size n can be embedded in lkn
1 ? What about for lp

when 1 < p ≤ ω?

This second problem has an interesting variation. Suppose D = {1, 2, 3} has

the “distance” in which 1 and 3 are distance one apart and all other pairs are at

distance zero. What is the least kn such that any connected graph on n vertices can

be embedded in a product of kn many copies of D with the L1 distance? It is not

obvious that kn exists and is finite.

This may seem a strange problem, but this is exactly the “addressing problem

for loop switching” posed by R. L. Graham and H. O. Pollak in 1971 in the Bell System

Technical Journal and solved by P. M. Winkler in 1983. The answer is kn = n− 1.10

The third problem is quite interesting. It may involve finite approximations

to topological orientability.

Proposition 5 (S. Malitz and J. Malitz, 1992). If a metric space X cannot

be embedded in R2 with the l∞-norm (or, equivalently, the l1-norm), then X has a

subspace of size 11 which cannot be embedded in R2 with the l∞-norm (or, equivalently,

the l1-norm). Thus, determining whether a finite metric space can be embedded in R2

with the l∞-norm can be done in polynomial time.

They state the existence of such a number (like 11), for Rn when n ≥ 3 is an

open question, and that their methods get “wildly complicated”.

But, we have obtained the following results.

Theorem 8. There is no N such that a finite metric space X cannot be embedded

in R3 with the l∞-norm if and only if X has a subspace of size N which cannot be

embedded in R3 with the l∞-norm.

Proof. Use a Mobius strip in which the width of the strip is much smaller than N

times the radius of the circle. Apply compactness to get a finite subset which is still

sufficiently “Mobius”.

10These are “squashed cubes”, but the problem for graphs in ordinary cubes remains open.
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Problem 23. Is it true that there is no N such that a finite metric space X cannot

be embedded in R3 with the l1-norm if and only if X has a subspace of size N which

cannot be embedded in R3 with the l1-norm? Is this true for some Rn? Can the

construction in theorem 8 be carried out in some Rn with the l1-norm?

Theorem 9. Determining whether a finite metric space X can be embedded in R6

with the l∞-norm is NP-complete.

Proof. The axes of a cube can be each be assigned one of three dimensions in

exactly six ways. This assignment must be constant on the product of a cube and a

line. If we join together two such products in such a way that all coordinates change,

then knowing the assignment on one side of the join gives us exactly two possibilities

on the other side of the join. Thus, using three more dimensions we can code the

3-colorability of graphs which is NP-complete.

Problem 24. Let 3 ≤ n ≤ 5. Is determining whether a finite metric space X can be

embedded in Rn with the l∞-norm NP-complete?

Problem 25. Is determining whether a finite metric space X can be embedded in Rn

with the l1-norm NP-complete?

9. L2-Embeddable Metrics

The problem of characterizing metric spaces which embed in Euclidean space

of some dimension is a classical one and was solved by Menger in the 1930’s. There is

a book by Blumenthal entitled Distance Geometry and even a Mathematical Reviews

section 51K devoted to this topic. But, in fact, this is an easy problem in R2 with the

Euclidean (l2) metric. For if a space embeds in R2 and a, b, c are points in that space

which do not satisfy the equality ρ(a, b) + ρ(b, c) = ρ(a, c) under any permutation,

then a is, without loss of generality, embedded arbitrarily. Now, b is embedded on

some circle centred at a, but otherwise its position is arbitrary. We deduce that c

must be placed in one of two positions, but this choice is again arbitrary. But, now

any further point must occupy an uniquely determined position. Thus, the position
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of any point is determined uniquely once we have three points “in general position”.

In the general setting of the Euclidean metric on Rn, the situation is analogous.

Much of the work in distance geometry is devoted to characterizing Euclidean

spaces, Banach spaces, hyperbolic spaces, inner product spaces and so forth entirely

from the combinatorial properties of their metrics. But, we will not discuss here this

fascinating topic and its intense activity since 1932 nor will we discuss the interesting

work on the “distance-one-preserving” maps of A. D. Aleksandrov.

What is surprising and important to us is that ultrametrics are L2-

embeddable.

Theorem 10 (Lemin, 1985; Vestfrid and Timan, 1979 for l∞). Any ultrametric

space of cardinality κ can be embedded isometrically in generalized Hilbert space {f ∈

Rκ :
∑
{f(α) : α ∈ κ} < ∞}.

This requires some work.

Another surprising fact is that L2-embeddable metrics are L1-embeddable.

Theorem 11. Any L2-embeddable space is L1-embeddable.

Problem 26. Give a direct proof that any L2 embeds isometrically into some L1(µ).

Can this be done by integration over projections onto hyperplanes of codimension 1?

What happens for p 6= ∞?

But, the most important fact about L2-embeddable metrics is that they are

the basic notion of MDS: multi-dimensional scaling. This is a huge topic about which

entire books have been written and for which there are many software packages being

sold.

The basic purpose of MDS, the thing that these packages accomplish, is to

take a set of data, either an n×k matrix showing the results of tests or an n×n matrix

which already exhibits similarity data, and to do the best job possible in representing

this data as points in the plane or in a higher-dimension Euclidean space.

There is a lot involved here. Scaling the similarity data with real numbers,

reconstruction of missing and spurious data, approximation to a metric which is em-

beddable in some Euclidean space. The problem of reconstructing missing data is an
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important one. Sippl and Scheraga, Proc. Nat. Acad. Sci. USA 83 (1986) 2283 and

Schlitter 1987 in pursuit of reconstructing distance data in problems on nuclear mag-

netic resonance, showed that we need only a 4× n submatrix of the distance matrix

to reconstruct effectively in R3 so long as the 4 points chosen are in general position.

Problem 27. What happens in the reconstruction problem for the L1 or L∞ metric?

Problem 28. If (X, ρ) is a metric space, then what are necessary and sufficient

conditions on A ⊂ X2 so that, whenever ρ′ is another metric on X such that ρ �

A = ρ′ � A, we must have ρ = ρ′. What if we only want ρ and ρ′ to be equivalent or

uniformly equivalent?

Problem 29. Find k(n) so that, if A is a metric space which can be embedded in

ln∞, then is there a finite set B ⊂ A of size k(n) such that knowing all the distances

between points of A and points of B allows one to reconstruct the distance matrix.

Problem 30. Where does Lp-embeddable fit into the scheme we have given? Does

ultrametric imply Lp-embeddable which implies L1-embeddable, when p 6= ∞? Are the

classes of Lp-embeddable metrics comparable?

10. Hypermetric Spaces and Spaces of Negative Type

The notion of L1-embeddable differs greatly from additive trees and ultra-

metrics in that it does not seem to have a definition by a simple inequality. It is

suspected that there are no simple characterizations of L1-embeddable metrics, but

this has never been established.

Problem 31. Is there a first-order characterization of L1-embeddability?

A. Neyman showed in 1984 that there is no characterization which is a finite

conjunction of inequalities. Of course, by compactness, there is an infinite conjunction

of first-order formulas which characterizes L1-embeddable.

The attempts to characterize L1-embeddable by means of inequalities has led

to some interesting inequalities which must be satisfied by any L1-embeddable metric.

These include the hypermetric inequalities.
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Definition 5. A hypermetric inequality is defined for each b : X → Z such that∑
{b(x) : x ∈ X} = 1 and states that

∑
{b(x)b(y)d(x, y) : x, y ∈ X} ≤ 0. A metric

space which satisfies each hypermetric inequality is said to be a hypermetric space.

While this scheme is a little hard to understand at first, there are relatively

few instances which are not satisfied automatically. In fact, the least complicated

instance is accomplished by the b’s which are 1, 1, 1,−1,−1. This yields the pentagon

inequality, cited in the introduction. The easiest way to understand the hypermetric

inequalities is to note that they forbid the bipartite graphs K(n, n + 1) when n ≥ 2.

Theorem 12. L1-embeddable metrics are hypermetric.

Proof. A cut pseudometric on a set X is a binary-valued pseudometric induced

by any A ⊂ X which is defined by letting ρ(x, x′) = 1 iff |{x, x′} ∩ A| = 1. Any

L1-embeddable metric is a linear combination of cut pseudometrics. Hypermetricity

is clearly preserved by linear combinations. So, it suffices to show that cut pseudo-

metrics are hypermetric. This means that we must show that, whenever a, b, c, d ≥ 0,

we have a + c− b− d = 1 ⇒ (a− b)(c− d) ≤ 0 which is easy.

Nevertheless, these inequalities do not characterize L1-embeddable metrics. In

1977, Assouad and, independently, Avis in 1981, showed that the graph obtained by

deleting two adjacent edges from K7 is hypermetric, but not L1-embeddable. More

sophisticated inequality schemes valid for L1-embeddable metrics were devised by

Deza and Laurent in 1992.

Despite their humble birth as approximations to L1-embeddability, hyper-

metrics are significant to geometry. Consider the problem of identifying the metrics

on Rn which are scalar multiples of the usual metric on each straight line (these are

called projective metrics). This is Hilbert’s fourth problem. In 1974, Pogorolev char-

acterized projective metrics in R2. In 1986, Szabo defined a complicated example of

a projective metric on R3 which does not satisfy Pogorolev’s characterization. To see

how hypermetrics are closely related to the fourth problem, we need a concept from

convex geometry. A zonoid is a convex set which is arbitrarily close in the Hausdorff
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metric to convex polytopes in Rn. Alexander showed in 1988 that whenever the dual

unit ball of a finite-dimensional normed linear space M (with a projective metric) is

not zonoid, Pogorolev’s characterization does not work. In 1975, Kelly proved that

this problem is equivalent to determining whether the dual space of M is hypermetric.

To get a projective metric on R3 which does not satisfy Pogorolev’s characterization,

we need only a projective metric which is not hypermetric. L∞(R3) works!

Problem 32. Does L∞(R3) satisfy the pentagonal inequality? Characterize the pro-

jective metrics on R3 which disobey the pentagonal inequality or hypermetric inequal-

ities (or weaker properties).

It was proved in 1993 however by Deza, Grishukhin and Laurent, making use

of Voronoi theory, that hypermetric spaces can be described by a finite list of inequal-

ities. This is amazing, since the hypermetric scheme is infinite and does not seem to

contain any redundancies. We don’t know if this follows from logical considerations

alone.

Another surprising aspect of the hypermetric inequalities is that, despite their

failure to characterize the L1-embeddable metrics, they do carry some power. Indeed,

any hypermetric space still has some “Euclidean” structure.

Consider the example of a “distance” space consisting of the the points on the

n-sphere with the metric defined by the square of the Euclidean metric. Of course,

if we examine any three nearby and nearly collinear points, we see that this is not a

metric space, but it certainly has many metric subspaces.

Definition 6. If a metric space X can be isometrically embedded in some n-sphere

with the square of the Euclidean metric, then we say that X is spherical.

Theorem 13 (Deza, Grishukhin, Laurent). Every finite hypermetric space is

spherical.

Problem 33. Is any (countable, separable, arbitrary) hypermetric space isometrically

embeddable in some appropriately defined κ-sphere? What is the correct infinitary

notion of spherical?
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Problem 34. There is at least an example of a spherical space which is not hyper-

metric?

Note that it does not suffice to take an appropriate sphere, since this will not

satisfy the triangle inequality.

Moving even further into weak properties, we can identify the negative-type

inequalities. These are defined exactly like the hypermetric inequalities, except that

we require only
∑
{b(x) : x ∈ X} = 0.

Definition 7. A negative-type inequality is defined for each b : X → Z such that∑
{b(x) : x ∈ X} = 0 and states that

∑
{b(x)b(y)d(x, y) : x, y ∈ X} ≤ 0. A metric

space which satisfies each negative-type inequality is said to be a space of negative-

type.

Again, it is easiest to understand the negative-type inequalities as forbidding

the graph K(n, n) when n ≥ 3.11

So, hypermetric spaces and spaces of negative-type are defined by analogous

schemes of inequalities, and spherical spaces are characterized by embeddability in a

specific Euclidean-style space. Nevertheless, spherical spaces interpolate hypermetric

spaces and spaces of negative-type !

Theorem 14 (Deza, Grishukhin). Every spherical space has negative-type and

thus every hypermetric space has negative-type.

Of course, metric spaces of negative-type need not be hypermetric. The graph

K(2, 3) demonstrates this. This graph also answers one of the two parts of the next

question, but which one?

Problem 35. What is an example of a negative-type metric space which is not spher-

ical? What is an example of a spherical space which is not hypermetric?

In the application to Hilbert’s fourth problem, we used the fact that L∞(R3)

is not hypermetric.

Problem 36. Is L∞(R3) of negative type? For which n is L∞(Rn) of negative type?

11One easily embeds K(2, 2) in R3 and, of course, Kn is ultrametric.
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The next classical result is beautiful and surprising and demonstrates imme-

diately why spherical metrics are of negative-type.

Theorem 15 (I. J. Schoenberg, 1938). A metric space is of negative-type if and

only if it can be embedded in some Rn with the metric which is the square of the

Euclidean metric.

Actually, in the language of linear algebra, this was first proved by Cayley !

Ponder theorem 15. It says that any metric of negative type can be squared

and suddenly it is embedded in Euclidean space. But, this squaring is such a “nice”

transformation ! The reason that we have not discussed the topological level of

generality, since leaving additive trees becomes clear. All of these properties: L2-

embeddable, L1-embeddable, hypermetric, spherical, negative type all coincide up

to homeomorphism, up to uniform homeomorphism, even up to composition of the

metric with a monotone function.

Let us call this composition a “scaling” and then be more exact.

Definition 8. If f : [0,∞) → [0,∞) is a function whose limit at zero is zero, then

the scaling of a metric ρ by f is the function ρf defined by ρf (x, y) = f(ρ(x, y)).

Proposition 6. Any scale which is concave up preserves the triangle inequality.

Delistathis has noted the well-known transformation x → x
1+x which is used

to bound metrics provides the most common example of an application of proposi-

tion 6.

The notion of scaling can be used to approach the problem of deciding how

“geometric” these weaker metric concepts are.12 Certainly, all separable metric spaces

can be embedded by an uniform homeomorphism into Hilbert space (this was proved

first by Mysior, it seems). But, not all separable metric spaces can be embedded by

a re-scaling into Hilbert space.

Theorem 16. There is a separable metric space which cannot be scaled to embed in

a pentagonal (and thus, Euclidean or negative-type) space.

12Note that scaling preserves ultrametricity, but maybe not additive tree distances.
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Proof. Take the bipartite graph K(n, n) for all possible choices of n and multiplied

by all possible choices of positive rational numbers.

Every finite metric space has a scale which embeds it into l2 but whether one

can get these scales in an uniform manner is unknown.

Problem 37 (Maehara, 1986). Is there a scale which embeds all metric spaces of

fixed size n (even size 5) into l2 simultaneously?

11. Lipschitz Constants and Eigenvalues

Another property of a transformation weaker than uniform homeomorphism

but incomparable to scaling is that of an α-Lipschitz map. We say that two metrics

ρ and π are α-Lipschitz where α ≥ 1 if every quotient ρ(x,y)
π(x,y) and its inverse is at most

α. Of course, two metrics are 1-Lipschitz if and only if they coincide. This notion

enables us to ask whether an arbitrary metric is α-Lipschitz to an Euclidean metric

and so forth.

Note that the square root scaling is not α-Lipschitz for any constant α.

So, there is no reason to expect L2-embeddable, L1-embeddable, hypermetric, and

negative-type to be α-Lipschitz for any constant α.

Proposition 7 (J. Bourgain, T. Figiel, V. Milman). There is a finite metric

space which is not 2-Lipschitz isometrically embeddable in l2.

Theorem 17. There is, for each α > 2, a finite metric space which is not α-Lipschitz

to a space of negative type (or a subset of l2).

Note that K(n, n) is easily shown not to be (
√

2− ε)-Lipschitz isometrically

embeddable in l2.

Problem 38. Is there a metric space of negative type which is not α-Lipschitz iso-

metrically embeddable to a subset of l2?

In their pursuit of pathological examples in the geometry of Banach spaces,

Bourgain, Milman and Wolfson did establish a Ramsey-theoretic theorem showing

that in the disorder of arbitrary finite metric spaces can be found a certain amount
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of “Euclidean behavior”. That is, arbitrary finite metric spaces do have fair-sized

subsets which do embed into l2.

Theorem 18 (J. Bourgain, T. Figiel, V. Milman). For every α > 1, there

is C > 0 such that every finite metric space contains a subset which is α-Lipschitz

embeddable in l2 and has size at least C log |X|.

Indeed, Bourgain, Milman and Wolfson defines their own metric inequality

which says that a metric space has type 2 if there is ε > 0 so that, for any labelling

of points by the vertices of an n-cube, the l2-sum of the diagonals is less than ε times

the l2-sum of the edges. They show that a metric space of type 2 contains copies of

ln1 up to a Lipschitz constant.

Problem 39. Does type 2 fit naturally into the scheme of hypermetric and negative-

type inequalities?

Problem 40. What Lipschitz constants, if any, exhibit the distinction between L2-

embeddable, L1-embeddable, hypermetric, negative-type and one positive eigenvalue?

Another transformation of metrics derives from the notion of a Robinsonian

metric. This is a metric ρ whose underlying set admits a linear order ≤ such that

a ≤ b ≤ c ≤ d ⇒ ρ(a, d) ≤ ρ(b, c). Thus, Robinsonian metrics are metrics which are

“compatible” with a linear order. Ultrametrics are Robinsonian, but we know little

more than this.

Problem 41. Are additive metrics Robinsonian? Are Robinsonian metrics of nega-

tive type (or hypermetric)? What if we allow ≤ to be a partial order of some kind?

Let us now turn to eigenvalues. Suppose we are given any n points in some

Euclidean space and compute the distance matrix. This matrix is symmetric and

thus has all real eigenvalues. It has zero entries along the diagonal and has exactly

one positive and n− 1 negative eigenvalues. It turns out that if a metric has negative

type, then it is still true that the distance matrix has exactly one positive eigenvalue.

Theorem 19. Any metric space which is of negative type has a single positive eigen-

value.
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The existence of a single positive eigenvalue represents the weakest metric

property which has so far been isolated.

Definition 9. If (X, ρ) is a metric space and, for each finite {ai : i ∈ n} ⊂ X,

the n × n distance matrix whose (i, j)-th entry is ρ(ai, aj) has exactly one positive

eigenvalue, then we say that (X, ρ) has one positive eigenvalue.

To see that this definition is reasonable, one should note that if a matrix has

a particular eigenvalue, then any square submatrix also has that eigenvalue. K(3, 3)

is not negative-type and, indeed, it has two positive eigenvalues.

Problem 42. What are the metric spaces (of smallest cardinality) which do not have

one positive eigenvalue?

An example due to Winkler of a metric space with one positive eigenvalue

which is not of negative type is the bipartite graph K(5, 2) with a single edge added

between the two points on the “side” with only two points.13

Problem 43. Can any metric space be scaled to have one positive eigenvalue?

The scaling method we described (taking the square root) shows that any

metric of negative type can be scaled to be Euclidean, but it is unknown what happens

for metrics with one positive eigenvalue.

Problem 44. Is there a metric space which has one positive eigenvalue which cannot

be scaled to have negative type (equivalently, to be Euclidean)?

Problem 45. Which Tychonoff spaces have, for each continuous pseudometric, an

equivalent (or generating a larger topology) continuous pseudometric with one positive

eigenvalue?

Further work has been done on investigating the characteristic polynomial of

distance matrices of graphs by R. L. Graham and L. Lovász. This work is beyond the

scope of this article, but, no doubt, investigating the characteristic polynomial of an

arbitrary metric space would be rewarding.

13An elegant proof of this was given by Deza and Maehara in 1990 and Marcu in 1991.
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Problem 46. Is there an useful class of metric spaces strictly weaker than those with

exactly one positive eigenvalue?

12. Quasi-Metrics

The notion of asymmetric distances occur frequently in the literature. In

optimization theory, for example, the “windy postman” problem is a version of the

travelling salesman problem in which the quasi-metric represents times needed to

cover a distance and so, “depending on the wind”, there is asymmetry.

Another significant application of asymmetric distances is in psychological

measurement. The influential 1978 article by Cunningham explains why this is so.

“There are some situations in which the direction of the dissimilarity measurement

may make a difference.” He continues: “As an example, consider the case of people

judging the similarity of two stimuli which differ markedly in their prominence or

number of known traits”. In 1977, Tversky found that people gave a consistently

higher rating when asked questions like “How similar is North Korea to Red China”

than when asked questions like “How similar is Red China to North Korea”.

The notion of an additive tree and the notion of the four-point property both

generalize to the asymmetric case naturally, but these generalizations do not seem to

be equivalent. Bandelt in 1990 found equations which characterize the asymmetric

generalization of additive trees.

Besides, these generalizations from the symmetric case, there is no available

means of classifying asymmetric distances.

The distance matrices for finite subsets of a quasi-metric spaces are not sym-

metric and thus these matrices may have some eigenvalues which are not real.

Problem 47. Do all quasi-metric spaces have an equivalent quasi-metric with all real

eigenvalues?

Problem 48. Let X be a completely regular (topological) space. Is there, for every

continuous quasi-metric on X, another continuous quasi-metric which generates a
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larger topology and all of whose eigenvalues are real? What if we require these quasi-

metrics to generate completely regular topologies?

Problem 49. Formulate problems whose solution would make progress towards the

understanding of asymmetric distance data.

13. Conclusion

The understanding of distance data is a fundamental goal of the natural and

social sciences. To create this understanding, there are problems of reconstruction

and approximation which are perhaps mainly problems in optimization theory and

thus in linear algebra or non-linear analysis. But, the problems of transformation,

representation and classification are topological problems. Although the data is finite,

solving the corresponding infinitary problems gives asymptotic and efficient methods

for solving the finite problems.14 Moreover, finite combinatorists find all but the most

graph-theoretic of these problems far too geometric or topological.15 Although the use

of distances suggests that this is a geometric problem, the importance of transforming

the data in a non-linear manner, and the key role of approximation and reconstruction

eliminates geometers from all but the most artificial and rigid of these problems.

The importance of Lp in the classification may suggest that these problems lie in the

territory of Banach space experts, but the absence of linearity immediately disqualifies

these problems from consideration by all but the most heretical of functional analysts.

This is a problem which is directly adjacent to graph theory, optimization

theory, operations research, geometry, and the theory of stochastic processes. This

is a problem of immediate and great importance to communications theory, to sta-

tistical mechanics, to mathematical psychology, to mathematical taxonomy and to

14The importance of algorithms and complexity of computation is key to making the infinite important.

If the uncountable fails, we must need enumeration and there will often be no algorithm. If the countably infinite

fails, we must need to quantify over subsets and this often gives a lower bound on complexity.
15But, it seems that a large part of the theory of distances in graphs may be extended usefully, with

some work, to a theory of L1-embeddable metrics.
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DĂNUŢ MARCU

multivariate statistical analysis whose significance will only increase when a more so-

phisticated theory is developed. This is a problem whose solution can be developed

by topologists.
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DĂNUŢ MARCU

[33] Pavel Krivka and Nenad Trinajstic, On the distance polynomial of a graph, Aplikace

Matematiky, 28(1983), 357–363.

[34] Mirko Krivanek, The complexity of ultrametric partitions on graphs, Inform. Process.

Lett., 27(1988), 265–270.

[35] Jose M. Bayod, The space l1(K) is not ultrametrizable, Dekker Lecture Notes in Pure

and Appl. Math., 137(1992), 221–255.

[36] Jose M. Bayod and J. Martinez-Maurica, Subdominant ultrametrics, Proc. Amer. Math.

Soc., 109(1990), 829–834.

[37] B. Van-Cutsem, Minimal superior ultrametrics under order constraint, Discrete Math.,

84(1990), 201–204.

[38] Wen-Hsiung Li, Simple method for constructing phylogenetic trees from distance ma-

trices, Proc. Nat. Acad. Sci. U.S.A., 78(1981), 1085–1089.

[39] Rudolf Mathar, The best Euclidian fit to a given distance matrix in prescribed dimen-

sions, Linear Algebra Appl., 67(1985), 1–6.

[40] Rudolf Mathar, Multidimensional scaling with constraints on the configuration, J. Mul-

tivariate Anal., 33(1990), 151–156.

[41] W. C. Navidi, G. A. Churchill and A. von-Haeseler, Phylogenetic inference: linear

invariants and maximum likelihood, Biometrics, 49(1993), 543–555.

[42] Mirko Krivanek, A note on the computational complexity of hierarchical overlapping

clustering, Aplikace Matematiky, 30(1985), 453–460.

[43] David Penny, Towards a basis for classification: the incompleteness of distance mea-

sures, incompatibility analysis and phenetic classification, Journal of Theoretical Biol-

ogy, 96(1982), 129–142.

[44] Lu Yang and Jing-Zhong Zhang, Metric spaces which cannot be isometrically embedded

in Hilbert space, Bull. Austral. Math. Soc., 30(1984), 161–167.

[45] Manfred J. Sippl and Harold A. Scheraga, Cayley-Menger coordinates, Proc. Nat. Acad.

Sci. U.S.A., 83(1986), 2283–2287.

[46] J. Schlitter, Calculation of coordinates from incomplete and incorrect distance data, Z.

Angew. Math. Phys., 38(1987), 1–9.
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