STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLIX, Number 1, March 2004

CORRIGENDUM: ON THE IRRATIONALITY OF SOME ALTERNATING SERIES

J. SÁNDOR AND J. SONDOW

The aim of this note is to point out that Theorem 1 of the first author's paper [1] is incorrect, and to replace it with Theorem A below and give an application.

Theorem 1. Let (a_n) be a sequence of positive integers such that $a_n(a_1a_2...a_{n-1})^2 \to \infty$ as $n \to \infty$. Then the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{a_n(a_1...a_{n-1})^2}$ is irrational.

The constant sequence $(a_n) = 2, 2, ...$ is a counterexample. The mistake in the proof lies in assuming that, with $u_i = (a_1 ... a_{i-1})^{-2}$ and $v_i = a_i$, the sum $\sum_{i=1}^{n} (-1)^{i-1} u_i / v_i$ is a rational number with denominator $v_1 ... v_n$. In fact, the denom-

inator is $v_n(v_1 \dots v_{n-1})^2$.

The following result is a generalization of Lemma 1 in [1].

Theorem A. Let $(r_n) = (h_n/k_n)$ be a sequence of rational numbers, with $k_n > 0$, satisfying

(i) $r_2 < r_4 < r_6 < \dots < r_5 < r_3 < r_1$ and

(ii) $\liminf_{k=1}^{n} k_n |r_{n+1} - r_n| = 0$. Then the alternating series

 $r_1 - (r_1 - r_2) + (r_3 - r_2) - (r_3 - r_4) + \dots$

converges and its sum is irrational.

Proof. It follows from (i) and (ii) that the conditions of Leibniz's alternating series test are satisfied. Thus the series converges and its sum, θ , lies between the partial sums r_n and r_{n+1} , for n = 1, 2, ... Suppose now that $\theta = a/b$ is rational, b > 0. Then (ii) and the inequalities $0 < |\theta - r_n| < |r_{n+1} - r_n|$ imply that $0 < |ak_n - bh_n| < bk_n |r_{n+1} - r_n| < 1$, for some $n \ge 1$. This contradicts the fact that $ak_n - bh_n$ is an integer, completing the proof. \Box

As an application of Theorem A (or of Lemma 1), we obtain a new proof that if p_n/q_n is the n-th convergent of an infinite simple continued fraction, n = 0, 1, 2, ..., then the sum of the series $p_0/q_0 + \sum_{n=0}^{\infty} (-1)^n/(q_nq_{n+1})$ is an irrational number, namely,

the value of the continued fraction.

Received by the editors: 01.03.2004.

J. SÁNDOR AND J. SONDOW

References

 J. Sándor, On the irrationality of some alternating series, Studia Univ. Babeş-Bolyai, 33(1988), 8-12.

DEPARTMENT OF PURE MATHEMATICS, BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA, ROMANIA *E-mail address:* jsandor@math.ubbcluj.ro

209 WEST 97 STREET, NEW YORK, NY 10025, USA *E-mail address:* jsondow@alumni.princeton.edu