STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLIX, Number 1, March 2004

DATA DEPENDENCE OF THE FIXED POINTS SET OF WEAKLY PICARD OPERATORS IN GENERALIZED METRIC SPACES

CLAUDIA BACOŢIU

Abstract. In this paper we will extend the results concerning the data dependence of the fixed points set of weakly Picard operators to a generalized metric space (X, d) with $d(x, y) \in \mathbb{R}^n$, $n \in \mathbb{N}^*$.

1. Introduction

Definition 1. Let $x, y \in \mathbb{R}^n$, $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$. We will consider, by definition:

- $x \le y \Leftrightarrow x_i \le y_i \ \forall i = \overline{1, n};$
- $|x| = (|x_1|, |x_2|, ..., |x_n|);$
- $max(x, y) = (max(x_1, y_1), max(x_2, y_2), ..., max(x_n, y_n)).$

Definition 2. Let X be a nonempty set; an application $d : X \times X \to \mathbb{R}^n_+$ is called generalized metric on X iff:

(i) $d(x, y) \ge 0 \ \forall x, y \in X; \ d(x, y) = 0 \Leftrightarrow x = y;$ (ii) $d(x, y) = d(y, x) \ \forall x, y \in X;$ (iii) $d(x, y) \le d(x, z) + d(z, y) \ \forall x, y, z \in X.$

In this case, (X, d) is said to be a generalized metric space (g.m.s. on short).

The related definitions of completeness, weakly Picard operators, the operator f^{∞} in a g.m.s. are the same as in the standard metric spaces.

Definition 3. If (X, d) is a g.m.s., we will consider the Pompeiu-Hausdorff functional

 $\begin{array}{l} H: P(X) \times P(X) \to (\mathbb{R}_+ \bigcup \{+\infty\})^n, \quad H = (H_1, H_2, ..., H_n) \\ H_i(A, B) := max \{ \sup_{a \in A} \inf_{b \in B} d_i(a, b), \sup_{b \in b} \inf_{a \in A} d_i(a, b) \} \; \forall A, B \in P(X) \; \forall i = \overline{1, n}. \end{array}$

Definition 4. If (X, d) is a g.m.s., an operator $f : X \to X$ is called C-weakly Picard iff f is weakly Picard and there exists $C \in \mathcal{M}_{n,n}(\mathbb{R})$ such that $d(x, f^{\infty}(x)) \leq Cd(x, f(x)) \ \forall x \in X.$

Received by the editors: 17.09.2003.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases.}\ \mathit{fixed}\ \mathit{point},\ \mathit{Picard}\ \mathit{operator},\ \mathit{generalized}\ \mathit{metric.}$

CLAUDIA BACOŢIU

2. Main results

Theorem 1. Let (X,d) be a complete g.m.s. and $f,g: X \to X$ two operators. We suppose that:

(i) there exist $C, D \in \mathcal{M}_{n,n}(\mathbb{R})$ such that f is C-weakly Picard and g is D-weakly Picard;

(ii) there exists $\eta \in \mathbb{R}^n_+$ such that $d(f(x), g(x)) \leq \eta \ \forall x \in X$. Then $H(F_f, F_g) \leq \max\{C\eta, D\eta\}.$

To prove this theorem we will use the next Lemma:

Lemma 1. If (X, d) is a g.m.s. and $A, B \in P(X); \eta, \zeta \in \mathbb{R}^n_+$ such that: $\forall a \in A \exists b \in B : d(a, b) \leq \eta;$ $\forall b \in B \exists a \in A : d(a, b) \leq \zeta.$ Then $H(A, B) \leq \max\{\eta, \zeta\}.$

Proof-Theorem 1:

Let $x \in F_g$; then: $d(x, f^{\infty}(x)) \leq Cd(x, f(x)) = Cd(g(x), f(x)) \leq C\eta$. By a similar argument, we have that $d(x, g^{\infty}(x)) \leq D\eta \ \forall x \in F_f$. It follows from Lemma 1 that $H(F_f, F_g) \leq \max\{C\eta, D\eta\}$. \Box

If in Theorem 1 we take f, g A-orbitally contractions, we have:

Theorem 2. Let (X, d) be a complete g.m.s. and $f, g : X \to X$ two orbitally continuous operators. We suppose that:

(i) $\exists A \in \mathcal{M}_{n,n}(\mathbb{R}), A^k \xrightarrow[k \to \infty]{} 0$ (i.e. the matrix A converges to zero) such that $d(f^2(x), f(x)) \leq Ad(f(x), x) \ \forall x \in X$ and $d(g^2(x), g(x)) \leq Ad(g(x), x) \ \forall x \in X;$ (ii) there exists $\eta \in \mathbb{R}^n_+$ such that $d(f(x), g(x)) \leq \eta \ \forall x \in X.$ Then: a) $F_f \neq \emptyset$ and $F_g \neq \emptyset;$ b) $H(F_f, F_g) \leq (I - A)^{-1} \eta.$

3. Applications

We will consider the following systems of integral equations with deviating argument:

$$x(t) = x(a) + \int_{a}^{b} K(t, s, x(s)) ds \quad \forall t \in [a, b]$$

$$(1)$$

$$x(t) = x(a) + \int_{a}^{b} N(t, s, x(s)) ds \quad \forall t \in [a, b]$$

$$(2)$$

where $K, N \in C([a, b] \times [a, b] \times \mathbb{R}^n, \mathbb{R}^n)$. By Theorem 2 we have:

Theorem 3. We suppose that: (i) $K(a, s, u) = 0 \in \mathbb{R}^n$ and $N(a, s, u) = 0 \in \mathbb{R}^n \quad \forall s \in \mathbb{R} \quad \forall u \in \mathbb{R}^n;$

(ii) there exists $\eta \in \mathbb{R}^n_+$ such that $|K(t,s,u) - N(t,s,u)| \le \eta \ \forall t,s \in [a,b] \ \forall u \in \mathbb{R}^n;$ (iii) there exists $L \in \mathcal{M}_{n,n}(\mathbb{R})$ such that $|K(t,s,u) - K(t,s,v)| \leq L|u-v| \ \forall t,s \in [a,b] \ \forall u,v \in \mathbb{R}^n \ and$ $|N(t,s,u) - N(t,s,v)| \le L|u-v| \ \forall t,s \in [a,b] \ \forall u,v \in \mathbb{R}^n;$ (iv) the matrix (b-a)L converges to zero. If S_1 and S_2 are the solutions sets of the systems (1) and (2) in $C([a,b],\mathbb{R}^n)$ then: a) $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$; b) $H_{\|\cdot\|}(S_1, S_2) \le [I - (b - a)L](b - a)\eta;$ where we consider the space $C([a,b],\mathbb{R}^n)$ with the generalized metric induced by the Tchebychev norm $||y|| := (||y_1||_{C[a,b]}, ||y_2||_{C[a,b]}, ..., ||y_n||_{C[a,b]}) \ \forall y \in C([a,b], \mathbb{R}^n) \ and$ $H_{\parallel \cdot \parallel}$ is the related Pompeiu-Hausdorff functional. **Proof** We consider the operators

Proof. We consider the operators

$$f, g: C([a, b], \mathbb{R}^n) \to C([a, b], \mathbb{R}^n)$$
 defined by
 $f(x)(t) = x(a) + \int_a^b K(t, s, x(s)) ds \ \forall t \in [a, b] \ \forall x \in C([a, b])$
 $g(x)(t) = x(a) + \int_a^b N(t, s, x(s)) ds \ \forall t \in [a, b] \ \forall x \in C([a, b])$

and we will apply the Theorem 2.

We have
$$f^{2}(x)(t) = x(a) + \int_{a}^{b} K(t, s, f(x(s))ds \ \forall t \in [a, b] \ \forall x \in C([a, b],$$

so $|f^{2}(x)(t) - f(x)(t)| \le (b - a)L ||f(x) - x|| \Rightarrow$
 $||f^{2}(x) - f(x)|| \le \underbrace{(b - a)L}_{converges \ to \ 0} ||f(x) - x||, \text{ so } F_{f} = S_{1} \neq \emptyset.$

By a similar argument, $||g^2(x) - g(x)|| \le (b-a)L||f(x) - x||$, so $F_g = S_2 \ne \emptyset$. We also have $||f(x) - g(x)|| \le (b - a)\eta \quad \forall x \in C([a, b]).$ We are in the conditions of the Theorem $2 \Rightarrow H_{\parallel \cdot \parallel}(F_f, F_g) \leq [I - (b - a)L](b - a)\eta$, i.e. $H_{\|\cdot\|}(S_1, S_2) \le [I - (b - a)L](b - a)\eta.\Box$

References

- I. A. Rus, S. Mureşan, Data Dependence of the Fixed Points Set of Weakly Picard Operators, Studia Univ. "Babeş-Bolyai", Mathematica, 43(1998), Nr.1, 79-83.
 I. A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.
- [3] A. Petruşel, Analiza operatorilor multivoci, Univ. Cluj, 1996.

"Samuel Brassai" High School, Cluj-Napoca, Romania E-mail address: Claudia.Bacotiu@clujnapoca.ro