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DATA DEPENDENCE OF THE FIXED POINTS SET OF WEAKLY
PICARD OPERATORS IN GENERALIZED METRIC SPACES

CLAUDIA BACOŢIU

Abstract. In this paper we will extend the results concerning the data de-
pendence of the fixed points set of weakly Picard operators to a generalized
metric space (X, d) with d(x, y) ∈ Rn, n ∈ N∗.

1. Introduction

Definition 1. Let x, y ∈ Rn, x = (x1, x2, ..., xn), y = (y1, y2, ..., yn). We will
consider, by definition:
• x ≤ y ⇔ xi ≤ yi ∀i = 1, n;
• | x |= (| x1 |, | x2 |, ..., | xn |);
• max(x, y) = (max(x1, y1),max(x2, y2), ...,max(xn, yn)).

Definition 2. Let X be a nonempty set; an application d : X × X → Rn
+ is called

generalized metric on X iff:
(i) d(x, y) ≥ 0 ∀x, y ∈ X; d(x, y) = 0 ⇔ x = y;
(ii) d(x, y) = d(y, x) ∀x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.
In this case, (X, d) is said to be a generalized metric space (g.m.s. on short).

The related definitions of completeness, weakly Picard operators, the operator
f∞ in a g.m.s. are the same as in the standard metric spaces.

Definition 3. If (X, d) is a g.m.s., we will consider the Pompeiu-Hausdorff
functional
H : P (X)× P (X) → (R+

⋃
{+∞})n, H = (H1,H2, ...,Hn)

Hi(A,B) := max{sup
a∈A

inf
b∈B

di(a, b), sup
b∈b

inf
a∈A

di(a, b)} ∀A,B ∈ P (X) ∀i = 1, n.

Definition 4. If (X, d) is a g.m.s., an operator f : X → X is called C-weakly Picard
iff f is weakly Picard and there exists C ∈Mn,n(R) such that
d(x, f∞(x)) ≤ Cd(x, f(x)) ∀x ∈ X.
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2. Main results

Theorem 1. Let (X, d) be a complete g.m.s. and f, g : X → X two operators. We
suppose that:
(i) there exist C,D ∈ Mn,n(R) such that f is C-weakly Picard and g is D-weakly
Picard;
(ii) there exists η ∈ Rn

+ such that d(f(x), g(x)) ≤ η ∀x ∈ X.
Then H(Ff , Fg) ≤ max{Cη,Dη}.

To prove this theorem we will use the next Lemma:
Lemma 1. If (X, d) is a g.m.s. and A, B ∈ P (X); η, ζ ∈ Rn

+ such that:
∀a ∈ A ∃b ∈ B : d(a, b) ≤ η;
∀b ∈ B ∃a ∈ A : d(a, b) ≤ ζ.
Then H(A,B) ≤ max{η, ζ}.

Proof -Theorem 1:
Let x ∈ Fg; then:
d(x, f∞(x)) ≤ Cd(x, f(x)) = Cd(g(x), f(x)) ≤ Cη.
By a similar argument, we have that d(x, g∞(x)) ≤ Dη ∀x ∈ Ff .
It follows from Lemma 1 that H(Ff , Fg) ≤ max{Cη,Dη}.�
If in Theorem 1 we take f, g A-orbitally contractions, we have:
Theorem 2. Let (X, d) be a complete g.m.s. and f, g : X → X two orbitally contin-
uous operators. We suppose that:
(i) ∃A ∈Mn,n(R), Ak −−−−→

k→∞
0 (i.e. the matrix A converges to zero) such that

d(f2(x), f(x)) ≤ Ad(f(x), x) ∀x ∈ X and
d(g2(x), g(x)) ≤ Ad(g(x), x) ∀x ∈ X;
(ii) there exists η ∈ Rn

+ such that d(f(x), g(x)) ≤ η ∀x ∈ X.
Then:
a) Ff 6= ∅ and Fg 6= ∅;
b) H(Ff , Fg) ≤ (I −A)−1η.

3. Applications

We will consider the following systems of integral equations with deviating
argument:

x(t) = x(a) +

b∫
a

K(t, s, x(s))ds ∀t ∈ [a, b] (1)

x(t) = x(a) +

b∫
a

N(t, s, x(s))ds ∀t ∈ [a, b] (2)

where K, N ∈ C([a, b]× [a, b]× Rn, Rn).
By Theorem 2 we have:
Theorem 3. We suppose that:
(i) K(a, s, u) = 0 ∈ Rn and N(a, s, u) = 0 ∈ Rn ∀s ∈ R ∀u ∈ Rn;
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(ii) there exists η ∈ Rn
+ such that

|K(t, s, u)−N(t, s, u)| ≤ η ∀t, s ∈ [a, b] ∀u ∈ Rn;
(iii) there exists L ∈Mn,n(R) such that
|K(t, s, u)−K(t, s, v)| ≤ L|u− v| ∀t, s ∈ [a, b] ∀u, v ∈ Rn and
|N(t, s, u)−N(t, s, v)| ≤ L|u− v| ∀t, s ∈ [a, b] ∀u, v ∈ Rn;
(iv) the matrix (b− a)L converges to zero.
If S1 and S2 are the solutions sets of the systems (1) and (2) in C([a, b], Rn) then:
a) S1 6= ∅ and S2 6= ∅;
b) H‖·‖(S1, S2) ≤ [I − (b− a)L](b− a)η;
where we consider the space C([a, b], Rn) with the generalized metric induced by the
Tchebychev norm ‖y‖ := (‖y1‖C[a,b], ‖y2‖C[a,b], ..., ‖yn‖C[a,b]) ∀y ∈ C([a, b], Rn) and
H‖·‖ is the related Pompeiu-Hausdorff functional.

Proof. We consider the operators
f, g : C([a, b], Rn) → C([a, b], Rn) defined by

f(x)(t) = x(a) +
b∫

a

K(t, s, x(s))ds ∀t ∈ [a, b] ∀x ∈ C([a, b];

g(x)(t) = x(a) +
b∫

a

N(t, s, x(s))ds ∀t ∈ [a, b] ∀x ∈ C([a, b]

and we will apply the Theorem 2.

We have f2(x)(t) = x(a) +
b∫

a

K(t, s, f(x(s))ds ∀t ∈ [a, b] ∀x ∈ C([a, b],

so |f2(x)(t)− f(x)(t)| ≤ (b− a)L‖f(x)− x‖ ⇒
‖f2(x)− f(x)‖ ≤ (b− a)L︸ ︷︷ ︸

converges to 0

‖f(x)− x‖, so Ff = S1 6= ∅.

By a similar argument, ‖g2(x)− g(x)‖ ≤ (b− a)L‖f(x)− x‖, so Fg = S2 6= ∅.
We also have ‖f(x)− g(x)‖ ≤ (b− a)η ∀x ∈ C([a, b]).
We are in the conditions of the Theorem 2 ⇒ H‖·‖(Ff , Fg) ≤ [I − (b− a)L](b− a)η,
i.e. H‖·‖(S1, S2) ≤ [I − (b− a)L](b− a)η.�
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