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A MATHEMATICAL MODEL FOR THE STUDY OF GLYCAEMIC
HOMEOSTASY

ALEXANDRU BICA

Abstract. A mathematical model for the blood-glucose homeostasis is
built in this paper, using the previous models. The results of this paper
concern the stability of the equilibrium solutions of a nonlinear differential
system which govern the model.

1. Introduction

Here, we propose the study of some properties of the mechanisms which
are involved in the blood glucose concentration homeostasis. We have in view the
models which have been elaborated up to the present and we build a model for the
glycaemic homeostasy. In 1965 Ackerman, Gatewood, Rosevear and Molnar [1] have
been proposed a model described by a differential linear system in plane where the
parameters are the glucose deviation from his constant value (harvested in blood
in the morning after fasts overnight) and the similar deviation of a well-balanced
average concentration of hormones (insulin, glucagon, growth hormone, epinephrine,
cortisone). The destination of the model is to understand the treatment of diabetics
in assumption of the administer of some hypoglicaemiant medicine and of glucose.
The nonhomogeneous differential system which govern this model is the following:{

g
′
= −m1g −m2h + J

h
′
= −m3h + m4g + K

where, m1,m2,m3,m4 are positive constant, J(t) is the rate of infusion from the
intestines (or intravenously) of the glucose, K(t) is the intravenous rate of infusion
of the insulin, g = G − G0, h = H − H0. Here, G = G(t) is the blood glucose
concentration, H = H(t) is the glucose-regulation hormones concentration in the
blood and G0,H0 are the constant levels of this concentrations. We can see in the
above system that the action of the hormonal concentration, h, is prevalent of the
insulin type. In [1], some assumptions are used about the J and K functions and
about the constants mi, i = 1, 4 (for instance, (m1 +m3)2 < 4m1m3 +4m2m4) which
permit to solve the system and to obtain the solution in a damping oscillatory form
round about the G0 and H0 levels.

Afterwards, was been elaborated some models which contain the distinct ac-
tion of the hyperglicaemiant hormones. A summary presentation of these models can
be found in [3]. For instance the Automonov model contain three status parameters
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(insulin and epinephrine concentrations and the glucose concentration in three com-
partments) and lead to a system with 6 linear differential equations. In [3], starting to
the former models, the author build a model (together with the Rhode Island Hospital
research workers) considering the blood glucose concentration and the plasmatic lev-
els of hormones (insulin, glucagon, growth hormone, cortisone, thyroxin, epinephrine)
and of the free fatty acids and aminoacids. From these result a nonlinear neutral
system with 5 differential equations, which also describe various processes included
negative feedbacks. Some arguments for nonlinearity are exposed in [3] (we use these
arguments and other arguments in this article)

In [4] some algorithms are proposed for the mathematical modelling in gly-
caemic evolution of diabetics, with applications in treatment schemes. Here, are
considered the advanced diabetic cases which present the phenomena of glycosuria,
proposing a model with two status parameters : glycaemia and the sugar concentra-
tion in urine.

In the construction of the model, in this article, we consider the hypotheses
from [1] and [3] and the assertions from the medical monography [2]. Here, we consider
the effect of the interaction between the glucose and the hormones concerning on the
speed of glycaemic changes and we obtain a nonlinear differential system. Because
the glycaemic homeostasy contain negative feedback processes (in accord with [1],
[2], [3]), in each equation there is such terms. It is known that the mechanisms of
glycaemic homeostasy are so delicacy, and then the effect of the interaction between
the glucose and the hormones is attenuated by the great glycaemic values. This effect
will be appear in the first equation through the nonlinear term,

axy

x + G0
.

2. The construction of the model

The status parameters are the plasmatic concentrations of the glucose, G(t),
of the insulin, I(t), and of the average of hyperglycaemiant hormones, H(t) (glucagon,
cortisone, tyroxin, ACTH, growth hormone, epinephrine). Using the reasonings from
[1] and [3] we consider that G, I,H are derivable with continuous derivative functions
on an interval of [0,∞). Let G0, I0,H0 be the values of these functions at the initial
moment, t0 ∈ [0,∞) , which can be known by blood harvesting in the morning
after fasts overnight. Our aim is to obtain results using the classification of the
singular points in the plane and therefore we consider two dependent variables, x(t) =
G(t) − G0, y(t) = H(t) −H0 − (I(t) − I0). Then, the new status parameters are the
glycaemic deviation from his equilibrium value and the difference of such deviations
for insulin and hyperglycaemiant hormones.

The following hypotheses are used in the construction of the model :
a) Each status variable have influence upon the proper speed of changes into

a negative feedback process.
b) An increase of hyperglycaemiant hormones secretion provoke the increase

of glycaemia, and the release of insulin secretion lead to a diminution of glycaemia.
A glycaemic increase provoke the increase of insulin secretion and the decrease of
hyperglycaemiant hormones secretion.

c) The interaction between the glucose and hormones determine a moderate
modification of glycaemia. This hypothesis introduce in the first equation of the
system a nonlinear term. The intestinal absorption of the alimentary glucose under
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the action of the intestinal glucagon (a hyperglycaemiant hormone) can be described
by this nonlinear term too. This is the reason because the model can be described by
an autonomous differential system:

(1)

{
x′ = a

xy

x + G0
− bx + my

y′ = −cx− dy
, a, b, c, d,m > 0

with initial conditions:
(2) : x(0) = 0, y(0) = 0.

The terms −bx and −dy represent the negative feedback according to the
hypothesis a), the terms my and −cx are introduced by the hypothesis b) and the term
a

xy

x + G0
is the nonlinear term from the hypothesis c). We can see that x+G0 = G >

0, because the glycaemic values are always positive. The constant values a, b, c, d, m
and G0,H0, I0 are specific to each person. The constant b, c, d, m have the same
signification as in [1] and a is a coefficient of hormonal efficiency. For the most
persons we can consider the condition ac ≥ bd + mc, be fulfilled.

3. First approximation stability

We consider the open semiplane, D = {(x, y) ∈ R2 : x > −G0} and the
functions

U, V : D −→ R, given by

U(x, y) = a
xy

x + G0
− bx + my, V (x, y) = −cx− dy.

It can see that U, V ∈ C1(D) and so there are locally Lipschitz on D. Then each
Cauchy problem, (1)+(2) with initial conditions in D, has a unique maximal solution.
About the stability of equilibrium solutions of the system (1) we obtain :
Theorem 3.1. For each positive values of a, b, c, d, m,G0 the system (1) has in the
set D two echilibrium solutions P1(0, 0) and P2(x2, y2) , with x2 < 0, y2 > 0 , such
that P1(0, 0) is asymptotically stable, and P2(x2, y2) is saddle point. If (b−d)2 < 4mc
then P1(0, 0) is focus.

Proof. The equilibrium solutions of the system (1) are the solutions of the algebraic
system : {

U(x, y) = 0
V (x, y) = 0 ⇐⇒

{ axy

x + G0
− bx + my = 0

−cx− dy = 0
,

that is x1 = 0, y1 = 0 and

x2 =
−G0(bd + mc)
ac + bd + mc

, y2 =
cG0(bd + mc)

d(ac + bd + mc)
.

For the first approximation stability of the equilibrium solutions P1(0, 0) and
P2(x2, y2) we compute the eigenvalues of the Jacobi matrix for the vectorial field
(U, V ) in these points. In this sense, for P1(0, 0) :

det(JU,V (0, 0)− λI) =

∣∣∣∣∣∣∣
∂U(0, 0)

∂x
− λ

∂U(0, 0)
∂y

∂V (0, 0)
∂x

∂V (0, 0)
∂y

− λ

∣∣∣∣∣∣∣ =
∣∣∣∣ −b− λ m
−c −d− λ

∣∣∣∣ =
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= 0 ⇐⇒ λ2 + (b + d)λ + mc + bd = 0.

Because b + d > 0 and bd + mc > 0 we infer that Reλ1 < 0,Reλ2 < 0. Then
P1(0, 0) is asymptotically stable (uniform, because the system is autonomous). If
(b − d)2 − 4mc ≥ 0 then, this equilibrium point is a node and if (b − d)2 − 4mc < 0
, is focus. The condition (b − d)2 − 4mc < 0, is priori asserted in [1], using some
experiments, where the values of b and d are greater than m and c, but such that
|b− d| < 2mc. For the equilibrium point P2(x2, y2) ,

∂U(x2, y2)
∂x

=
aG0y2

(x2 + G0)2
− b =

(bd + mc)2 + amc2

acd

∂U(x2, y2)
∂y

=
ax2

x2 + G0
+ m = −bd

c

∂V

∂x
= −c,

∂V

∂y
= −d.

Then, det(JU,V (x2, y2)− λI) = 0 ⇐⇒

λ2 +
[
d− (bd + mc)2 + amc2

acd

]
λ− (bd + mc)2 + amc2

ac
− bd = 0.

Because λ1λ2 = − (bd + mc)2 + amc2

ac
− bd < 0, ∀a, b, c, d, m ∈ R∗

+, we infer that

λ1, λ2 ∈ R, λ1 > 0, λ2 < 0 and then P2(x2, y2) is saddle point, (we can see that
(x2, y2) ∈ D). The condition ac ≥ bd+mc lead to x2 ∈ [−G0

2 , 0), (statistical verified).

Remark 4. In the phase portrait, the unstable manifold of the saddle point is a
curve through this point which arrive in the attractor P1(0, 0), and the stable manifold
is the frontier of the attraction basin of the origin. Here is the immediate clinical
interpretations: each initial perturbation from the attraction basine of the equilibrium
value (G0,H0 − I0) will be attract to this value, prevalent after damping oscillations.
For each person there is an glycaemic unstable equilibrium value (x2), which can be
considered a frontier value over there appear hypoglycaemia (sometimes coma). It
can see that for the persons with great value for b and d the frontier value is far from
the equilibrium value (G0,H0 − I0) and the return to this last value is more fast.
This persons are protected by diabetes and hypoglycaemia, having a good glycaemic
homeostasy.
Theorem 4.1. The system (1) has no periodic solutions.

Proof. Computing the divergence of the vectorial field (U, V ),

div(U, V )(x, y) =
∂U

∂x
+

∂V

∂y
=

ayG0

(x + G0)2
− b− d

we see that this divergence has constant sign in the inside and in the outside of the
parabola :

y =
(b + d)
aG0

(x + G0)2.

This parabola is in the first and in the second cadrane.., having the peak (−G0, 0).
So, the origin is in the outside of this parabola and then there is no limit cycle round
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about the origin, after the Bendixon theorem. Because the second singular point is
saddle we infer that there is no limit cycle round about this point.

5. Stability after permanent perturbations

Let be the perturbed system:

(3)

{
x′ = a

xy

x + G0
− bx + my + R1(t, x, y)

y′ = −cx− dy + R2(t, x, y)

with R1 and R2 continuous functions on J ×D, where J ⊂ [0,∞) is interval.
Suppose that the permanent perturbations R1 and R2 are bounded in average,

that is they have the property: ∀ε > 0,∀T > 0,∃η > 0 and ∃ϕ = (ϕ1, ϕ2) : J −→ R2

such that
∫ t+T

t
ϕi(s)ds < η, i = 1, 2 and |Ri(t, x, y)| < ϕi(t),∀t ∈ J,∀(x, y) ∈ D with

‖(x, y)‖ < ε, i = 1, 2. Then we obtain :
Theorem 5.1. The zero solution of the system (1) is stable after permanent pertur-
bations bounded in average.

Proof. Can apply the theorem 1.8′.(page95) from [5] and use the uniform asymptotic
stability of the zero solution (after the first theorem), ∀a, b, c, d.m > 0.

Remark 6. From the previous theorem follow that the glycaemic value G0 is re-
sistant to the perturbations of impulse type with great initial values, but bounded in
average and rapid estinguished. Such perturbations can be the momentary unloadings
of epinephrine (in an emergency). If the permanent perturbations nonbounded in aver-
age became frequent, then can be appear some metabolic disorders. Such perturbations
lead to the new glycaemic homeostasy configuration, which can be expressed by the
autonomous perturbations. We study on the stability after autonomous perturbations.

Let us consider the system:

(4)

{
x′ = a

xy

x + G0
− bx + my + f(x, y)

y′ = −cx− dy + g(x, y)

where f, g ∈ C2(D) with f(0, 0) = 0, g(0, 0) = 0. We study this system with the first
approximation method.

The origin is equilibrium solution of this system having the eigenvalues equa-
tion :

λ2 + [b + d− ∂f(0, 0)
∂x

− ∂g(0, 0)
∂y

]λ− b
∂g(0, 0)

∂y
+

∂f(0, 0)
∂x

· ∂g(0, 0)
∂y

+

+bd− d
∂f(0, 0)

∂x
+ mc− ∂f(0, 0)

∂y
· ∂g(0, 0)

∂x
+ c

∂f(0, 0)
∂y

−m
∂g(0, 0)

∂x
= 0.

If
∂f(0, 0)

∂y
> 0, b >

∂f(0, 0)
∂x

, d >
∂g(0, 0)

∂y
and c >

∂g(0, 0)
∂x

then the eigenvalues

have negative real part and the solution is uniform asymptotic stable. The clinical
interpretation is : if the hyperglycaemiant perturbations not succeed to modify the
negative feedback characteristic of the homeostasis mechanism, then the equilibrium
value is resistant to such perturbations.
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If
∂f(0, 0)

∂x
> b and

∂g(0, 0)
∂y

> d then the zero solution of the system (4) is

unstable. This means that the positive feedback appearance at the both components
(glucose and hormones) lead to glycaemic instability.

We study now a particular case of autonomous perturbation, with g(x, y) =
yg(x), g ∈ C2(I), I ⊂ (−G0,∞), without the condition g(0) = 0, which means that
the perturbation in the hormonal secretion speed have influence only on the hormonal
feedback mechanism..

(5)

{
x′ = a

xy

x + G0
− bx + my + f(x, y)

y′ = −cx− dy + yg(x)
.

Supposing that 0 ∈ I, we can write the Taylor formula for the functions f and g :

(6) f(x, y) =
∂f(0, 0)

∂x
· x +

∂f(0, 0)
∂y

· y + ρ1(x, y)

g(x) = g(0) + g′(0)x + ρ2(x)

where ρ1(x, y) and ρ2(x) contain second order derivatives. For the stability study of
the zero solution of this system, after the first approximation method, the eigenvalues
equation is :

λ2 + [b + d− ∂f(0, 0)
∂x

− g(0)]λ + bd + mc− d · ∂f(0, 0)
∂x

+

+g(0) · ∂f(0, 0)
∂x

+ bg(0) + c · ∂f(0, 0)
∂y

= 0.

Proposition 6.1. The new feedback components,
∂f(0, 0)

∂x
and g(0) settle on the

stability of the zero solution and
∂f(0, 0)

∂y
establish the shape of the solutions in a

neighborhood of origin.

Proof. If
∂f(0, 0)

∂y
≤ 1

4c
[b − d − ∂f(0, 0)

∂x
+ g(0)]2 −m then the origin is a node or a

saddle point. Is saddle point if [b−∂f(0, 0)
∂x

]·[d−g(0)] < c[m+
∂f(0, 0)

∂y
], and a uniform

asymptotic stable node if [b− ∂f(0, 0)
∂x

] · [d−g(0)] > c[m+
∂f(0, 0)

∂y
] and d > g(0), b >

∂f(0, 0)
∂x

. The origin is unstable node if [b − ∂f(0, 0)
∂x

] · [d − g(0)] > c[m +
∂f(0, 0)

∂y
]

and d < g(0), b <
∂f(0, 0)

∂x
. When

∂f(0, 0)
∂y

≤ 1
4c

[b − d − ∂f(0, 0)
∂x

+ g(0)]2 −m the

eigenvalues are complex conjugated and the shape of the solutions in a neighborhood

of the origin is oscillatory. In this case, the sign of b + d− g(0)− ∂f(0, 0)
∂x

decide the
stability of the zero solution.

In the case
∂f(0, 0)

∂y
≤ 1

4c
[b − d − ∂f(0, 0)

∂x
+ g(0)]2 −m we distinguish the

situations :

(i) If b+d−g(0)− ∂f(0, 0)
∂x

> 0, then Reλ1,2 < 0 and the origin is asymptotic
stable focus.

18



A MATHEMATICAL MODEL FOR THE STUDY OF GLYCAEMIC HOMEOSTASY

(ii) If b + d− g(0)− ∂f(0, 0)
∂x

< 0, then Reλ1,2 > 0 and the origin is unstable
focus.

(iii) If b + d− g(0)− ∂f(0, 0)
∂x

= 0, then

λ1,2 = ± i

2

√
4c[m +

∂f(0, 0)
∂y

]− [b− d + g(0)− ∂f(0, 0)
∂x

]2.

Remark 7. We can realize the clinical interpretations: If the origin is a saddle point,
then the negative feedback mechanism of the glucose or of the hormones is overturned
and this means a transition from a moderate diabetes to an advanced diabetes.. In
the case of asymptotic stable node the negative feedback is preserved and the glycaemic
value G0 is resistant to perturbations. The case of unstable node correspond to positive

feedback and advanced diabetes.. If
∂f(0, 0)

∂y
increase then in the first equation of the

system (5) is fortified the insulin action, which means the presence of the insulin
therapy. If the origin is an asymptotic stable focus then the insulin dose is best,
succeeding to maintain the glycaemy at a nondangerous level. In the case of unstable
focus the treatment is inefficient.

We note µ =
∂f(0, 0)

∂x
and consider this value as a parameter and for fixed

g(0) let be µ0 = b + d − g(0). Suppose that f and g are of C∞ class and obtain the
following result:

Theorem 7.1. If f ∈ C∞(D), g ∈ C∞(I),
∂f(0, 0)

∂y
> 0 and ∆ < 0, then there is

a value of the µ parameter for which appear a Hopf bifurcation, corresponding to a
periodic solution of the system (5).

Proof. It can see that Reλ1,2(µ0) = 0 si
∂Reλ1,2(µ0)

∂µ
= 1

2 > 0. Because for each other

value of µ the zero solution is a focus, using the theorem of Hopf we infer that there
is a periodic solution and the zero solution is a centre. The existence of a periodic
solution can be proved in an other way, using the divergence of the vectorial field
(Φ,Ψ) : D −→ R2, with

Φ(x, y) = a
xy

x + G0
− bx + my + f(x, y)

Ψ(x, y) = −cx− dy + yg(x)

and the curve which limit the regions from D where the divergence have a constant

sign, is, y =

b + d− g(x)− ∂f(x, y)
∂x

aG0

 (x + G0)2. If µ = µ0, Then the point (0, 0) is

on this curve, which imply that in each neighborhood of origin the divergence change
the sign. Then, according to the theorem of Bendixon, there is a limit cycle round
about the origin.

Remark 8. If µ < µ0 then the origin is an asymptotic stable focus. When µ >
µ0, the origin is a unstable focus. Therefore, when µ increase crossing through µ0

appear a Hopf bifurcation and periodic solution with the loss of the stability. We can
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observe that the periodic solutions appear only during the treatment. The bifurcation
parameter can be selected also g(0). For a person with hyperglycaemia the value G0

is great, differing from the value of a healthy person. Therefore the value G0 from the
system (4) or (5) differ by the G0 from the system (1).
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