SOME APPLICATIONS OF WEAKLY PICARD OPERATORS

IOAN A. RUS

Dedicated to Professor Wolfgang W. Breckner at his 60th anniversary

Abstract. In this paper we give some applications of weakly Picard operators theory to linear positive approximation operators, to difference equations with deviating argument and to functional-integral equations.

1. Introduction

Let (X, d) be a metric space and $A : X \to X$ an operator. In this paper we shall use the following notations:

$$F_A := \{ x \in X | A(x) = x \};$$
$$I(A) := \{ Y \subset X | A(Y) \subset Y, \ Y \neq \emptyset \};$$
$$A^0 := 1_X, \ A^1 := A, \dots, A^{n+1} := A \circ A^n, \quad n \in N.$$

By definition an operator A is weakly Picard operator (WPO) if the sequence of successive approximations, $(A^n(x))_{n \in N}$ converges for all $x \in X$ and the limit is a fixed point of A. If the operator A is WPO and $F_A = \{x^*\}$, then by definition the operator A is Picard operator (PO). For an WPO A we consider the operator A^{∞} defined by

$$A^{\infty}: X \to X, \quad A^{\infty}(x) := \lim_{n \to \infty} A^n(x).$$

We have the following characterization of the WPOs.

Theorem 1.1 (I. A. Rus [6], [7], [12]). An operator A is WPO if and only if there exists a partition of $X, X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$, such that (a) $X_{\lambda} \in I(A), \ \forall \ \lambda \in \Lambda;$

Received by the editors: 10.01.2003.

2000 Mathematics Subject Classification. 47H10, 39B12, 45N05, 41A10.

Key words and phrases. weakly Picard operators, Bernstein operators of two variables, difference equations with deviating argument, functional-integral equation.

IOAN A. RUS

(b)
$$A|_{X_{\lambda}} : X_{\lambda} \to X_{\lambda}$$
 is PO, $\forall \lambda \in \Lambda$.

The aim of this paper is to give some applications of this theorem.

2. Iterates of two variables Bernstein operator

Let $\overline{D} = \{(x, y) \in \mathbb{R}^2 | x, y \in \mathbb{R}_+, x + y \leq 1\}$ and $e_{ij} : \overline{D} \to \mathbb{R}_+$ be defined by $e_{ij} := x^i y^j, i, j \in \mathbb{N}$.

Let we denote by $\|\cdot\|_C$ the Chebyshev norm on $C(\overline{D})$.

In what follow we consider the two variables Bernstein operator (see D. D. Stancu [13])

$$B_n: C(\overline{D}) \to C(\overline{D}), \quad n \in N^*$$

defined by

$$B_n(f)(x,y) := \sum_{0 \le i+j \le n} \frac{n!}{i!j!(n-i-j)!} x^i y^j (1-x-y)^{n-i-j} f\left(\frac{i}{n}, \frac{j}{n}\right).$$
(2.1)

It is well known that ([13]):

$$e_{00}, e_{01}, e_{10} \in F_{B_n}, \quad n \in N^*.$$

We have

Theorem 2.1. The operator B_n is WPO and

 $B_n^\infty(f)(x,y) = f(0,0) + [f(1,0) - f(0,0)]x + [f(0,1) - f(0,0)]y, \quad x,y \in \overline{D}; \ f \in C(\overline{D}).$

Proof. Let

$$X_{\alpha,\beta,\gamma} := \{ f \in C(\overline{D}) | f(0,0) = \alpha, f(1,0) = \beta, f(0,1) = \gamma \},$$
$$f_{\alpha,\beta,\gamma}(x,y) := \alpha + (\beta - \alpha)x + (\gamma - \alpha)y, \quad x,y \in \overline{D},$$

for all $\alpha, \beta, \gamma \in R$.

We remark that

(i) $X_{\alpha,\beta,\gamma}$ is a closed subset of $C(\overline{D})$; (ii) $X_{\alpha,\beta,\gamma}$ is an invariant subset of B_n , for all $\alpha, \beta, \gamma \in R$ and $n \in N^*$; (iii) $C(\overline{D}) = \bigcup_{\substack{\alpha,\beta,\gamma \in R \\ \alpha,\beta,\gamma}} X_{\alpha,\beta,\gamma}$ is a partition of $C(\overline{D})$; (iv) $f_{\alpha,\beta,\gamma} \in X_{\alpha,\beta,\gamma} \cap F_{B_n}$.

102

Now we prove that

$$B_n|_{X_{\alpha,\beta,\gamma}}: X_{\alpha,\beta,\gamma} \to X_{\alpha,\beta,\gamma}$$

is a contraction for all $\alpha, \beta, \gamma \in R$ and $n \in N^*$.

Let $f, g \in X_{\alpha,\beta,\gamma}$. From (2.1) we have

$$|B_n(f)(x,y) - B_n(g)(x,y)| = |B_n(f-g)(x,y)| \le \le |1 - (1 - x - y)^n - x^n - y^n| \cdot ||f - g||_C \le \le \left(1 - \frac{1}{2^{n-1}}\right) ||f - g||_C, \ \forall \ x, y \in \overline{D}.$$

So,

$$||B_n(f) - B_n(g)||_C \le \left(1 - \frac{1}{2^{n-1}}\right) ||f - g||_C, \ \forall \ f, g \in X_{\alpha, \beta, \gamma};$$

i.e., $B_n|_{X_{\alpha,\beta,\gamma}}$ is a contraction for all $\alpha, \beta, \gamma \in R$.

From the contraction principle $f_{\alpha,\beta,\gamma}$ is the unique fixed point of B_n in $X_{\alpha,\beta,\gamma}$ and that $B_n|_{X_{\alpha,\beta,\gamma}}$ is a PO.

From the Theorem 1.1 the proof follows.

Remark 2.1. For the one dimensional case see I. A. Rus [10], [11], [12] and O. Agratini and I. A. Rus [1]. See also R.P. Kelisky and T.J. Rivlin [4].

Remark 2.2. The case $\overline{D} = [0,1] \times [0,1]$ (see P. L. Butzer [3]) will be presented elsewhere.

Remark 2.3. A similar result for Bernstein operators on a simplex we have.

3. Difference equations in C([0,1],X)

Let X be a Banach space. We denote by $\|\cdot\|_C$ the Chebyshev norm on C([0,1],X). Let $h \in C([0,1] \times X \times X,X)$ and $g \in C([0,1] \times X,X)$ be two operators. In what follow we consider the following difference equation with deviating argument, in C([0,1],X),

$$x_{n+1}(t) = h(t, x_n(t), x_n(0)) + g(t, x_n(t)), \quad t \in [0, 1), \ n \in N^*$$
(3.1)

For to study this equation we consider the operator

$$A: C([0,1], X) \to C([0,1], X)$$
$$A(x)(t) := h(t, x(t), x(0)) + g(t, x(t)).$$
103

IOAN A. RUS

We have

Theorem 3.1. We suppose that

(i) $h(0, \lambda, \lambda) = \lambda, \ \forall \ \lambda \in X;$ (ii) $g(0, \lambda) = 0, \ \forall \ \lambda \in X;$ (iii) $g(t, \cdot)$ is an α -contraction for all $t \in [0, 1];$ (iv) $h(t, \cdot, \lambda)$ is a β -contraction for all $t \in [0, 1], \ \lambda \in X;$ (v) $\alpha + \beta < 1.$

Then the operator A is WPO.

Proof. Let

$$X_{\lambda} := \{ x \in C([0,1], X) | x(0) = \lambda \}, \quad \lambda \in X$$

Then

- (a) X_{λ} is a closed subset of C([0, 1], X);
- (b) $X_{\lambda} \in I(A)$, for all $\lambda \in X$;
- (c) $C([0,1],X) = \bigcup X_{\lambda}$ is a partition of C([0,1],X).

From (i)-(v) we have that the restriction of A to X_{λ} is an $(\alpha + \beta)$ -contraction. By the Theorem 1.1 we have that the operator A is WPO.

Let x_{λ}^* be the unique fixed point of the operator A in X_{λ} . It is clear that $cardF_A = cardX$, and that F_A is the equilibrium solution set of the equation (3.1).

From the Theorem 3.1 we have

Theorem 3.2. In the conditions of the Theorem 3.1, let $(x_n)_{n \in N}$ be a solution of the equation (3.1). If $x_0 \in X_{\lambda}$, then $x_n \in X_{\lambda}$, for all $n \in N$. Moreover

$$x_n \to x_\lambda^* \text{ as } n \to \infty.$$

Remark 3.1. In the conditions of Theorem 3.1 the equilibrium solution x_{λ}^* is globally asymptotically stable relative to X_{λ} .

Remark 3.2. For the fixed point technique in the theory of difference equations see M. A. Şerban [14].

Remark 3.3. The following example is in the conditions of the Theorem 3.1:

$$x_{n+1}(t) = \frac{1}{2}t\sin x_n(t) + x_n(0), \quad n \in N$$

104

 $x_0 \in C[0, 1]$

4. Functional-integral equations

Let X be a Banach space $f \in C([a, b] \times X, X)$ and $K \in C([a, b] \times [a, b] \times [a, b])$ X, X). Consider the following functional-integral equation

$$x(t) = x(a) + \int_{a}^{t} f(s, x(s))ds + \int_{\alpha}^{t} \int_{a}^{s} K(s, u, x(u))duds$$

$$t \in [a, b]; \quad x \in C([a, b], X)$$

$$(4.2)$$

Let $X_{\lambda} := \{x \in C([a,b],X) \mid x(a) = \lambda\}, \lambda \in X \text{ and } A : C([a,b],X) \rightarrow A \in X \}$ C([a, b], X) defined by A(x)(t) := second part of (4.1).

If we denote by S the solution set of the eq. (4.1) then $S = F_A$.

We remark that

- (a) X_{λ} is a closed subset of C([0, 1], X) for all $\lambda \in X$;
- (b) $X_{\lambda} \in I(A);$
- (c) $C([0,1], X) = \bigcup_{\lambda \in X} X_{\lambda}$ is partition of C([0,1], X); (d) if $f(s, \cdot)$ is L_f -Lipschitz and $K(s, u, \cdot)$ is L_K -Lipschitz for all $s, u \in [a, b]$

then the restriction of A to X_{λ} is a contraction with respect to a suitable Bielecki's norm. More exactly if we denote

$$||x||_B = \max_{a \le t \le b} (||x(t)|| e^{-\tau(t-a)})$$

then we have

$$\|A(x) - A(y)\|_B \le \left(\frac{L_f}{\tau} + \frac{L_K}{\tau^2}\right) \|x - y\|_B, \ \forall \ x, y \in X_\lambda; \ \lambda \in X.$$

Let x_{λ}^* be the unique fixed point of A in X_{λ} . From the Theorem 1.1 it follows that the operator A is WPO and $cardF_A = cardX$.

So, we have

Theorem 4.1. In the above conditions

(1) cardS = cardX

(2) the solution x_{λ}^* is globally asimptotically stable with respect to X_{λ} .

Remark 4.1. For other types of functional integral equations see R. Precup [5], I. A. Rus [8] and [9].

105

IOAN A. RUS

Remark 4.2. For other applications of the WPO see A. Buică [2], I. A. Rus

[6], [7].

References

- [1] O. Agratini and I. A. Rus, *Iterates of a class of discrete linear operators via contraction principle*, Comment. Math. Univ. Caroline (to appear).
- [2] A. Buică, Principii de coincidență și aplicații, Ed. Presa Univ. Clujeană, 2001.
- [3] P. L. Butzer, On two-dimensional Bernstein polynomials, Canad. J. Math., 4(1953), 107-113.
- [4] R. P. Kelisky and T. J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
- [5] R. Precup, *Methods in integral equations*, Kluwer, 2002.
- [6] I. A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.
- [7] I. A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, 2(2001), 41-58.
- [8] I. A. Rus, A class of nonlinear integral equations, BAM 1891-1938(2001), 377-384.
- [9] I. A. Rus, A class of functional-integral equations via weakly Picard operators, Anal. Univ. Craiova, 28(2001), 10-15.
- [10] I. A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babeş-Bolyai, 47(2002), Nr. 4 (to appear).
- [11] I. A. Rus, *Iterates of Bernstein operators, via contraction principle*, J. Math. Anal. Appl. (to appear).
- [12] I. A. Rus, A. Petruşel and G. Petruşel, Fixed point theory: 1950-2000. Romanian contributions, House of the Book of Science, Cluj-Napoca, 2002.
- [13] D. D. Stancu, On the approximation of functions of two variables by means of a class of linear operators, Proc. Intern. Conf. Constructive Function Theory, Varna, 1971, 327-336.
- [14] M. A. Şerban, Teoria punctului fix pentru operatori definiți pe produs cartezian, Presa Univ. Clujeană, 2002.

DEPARTMENT OF APPLIED MATHEMATICS, BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA, ROMANIA

E-mail address: iarus@math.ubbcluj.ro