CONSTRAINT CONTROLLABILITY IN INFINITE DIMENSIONAL BANACH SPACES

MARIAN MUREŞAN

Dedicated to Professor Wolfgang W. Breckner at his 60th anniversary

Abstract. Some well known criteria of controllability of linear and time invariant systems in \mathbb{R}^n has been extended in various directions. First we review briefly this topic. Then we introduce a necessary and sufficient criterion of approximately locally null-controllability for a system of differential equations in infinite dimensional Banach spaces. Several comments end the paper.

Introduction

Let \mathbb{R}^n be the *n*-dimensional Euclidean space. Denote by W an open neighborhood of a point $x_0 \in \mathbb{R}^n$. Consider the following system of differential equations

$$x'(t) = f(t, x(t), u(t)), \qquad x(t_0) = x_0, \ t \in T$$
(1)

where T is an interval (bounded or not), $t_0 \in T$, $T \ni t \mapsto x(t) \in \mathbb{R}^n$ is the state trajectory, and $T \ni t \mapsto u(t) \in U \subset \mathbb{R}^m$ is the control function.

Example. If f is a linear functions and the dynamics of system (1) is time invariant, we get the simplest case

$$x'(t) = Ax(t) + Bu(t), \qquad A \in M_{n \times n}, \ B \in M_{n \times m}.$$
(2)

Roughly speaking, (1) is said to be *controllable* if every state is accessible from every other state.

We mention some topics and works related to the idea of controllability

Received by the editors: 23.01.2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 93B05; Secondary 93C25, 93C50, 34A60.

 $Key\ words\ and\ phrases.$ controllability, constraint controllability, approximately locally null-controllability, Carathéodory mapping, measurable selections, integrable selections

Supported by a research project code CNCSIS 27/2002.

MARIAN MUREŞAN

- controllability in the time invariant case in finite dimensional spaces, [?], [?] and the references therein;
- controllability in the non-linear case in finite or infinite dimensional spaces, fixed point method, [?], [?], [?], [?], [?];
- controllability of convex processes in finite dimensional spaces, [?], [?], [?], [?];
- approximate null controllability of certain differential inclusions in infinite dimensional Banach spaces, [?].

1. Linear case in finite dimensional spaces

In this case we have system (2), i.e.,

$$x'(t) = Ax(t) + Bu(t), \qquad A \in M_{n \times n}, \ B \in M_{n \times m}.$$

If the control function u is (at least) Lebesgue integrable, the general solution of the above system is

$$x(t) = e^{At}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)\,d\tau, \quad t \in T.$$
(3)

Following [?] we say that system (1) is (completely) state

(i) approximately controllable on the finite interval $[t_0, t_f] \subset T$ if given $\varepsilon > 0$ and two arbitrary initial and final points x_0 and x_f in the state space there is an admissible controller $u(\cdot)$ on $[t_0, t_f]$ steering x_0 , along a solution curve of (1), to an ε -ball of x_1 , that is such that $||x(t_f, t_0, x_0, u) - x_1|| \le \varepsilon$.

(ii) exactly controllable on $[t_0, t_f]$ if $\varepsilon = 0$ in (i).

To system (2) we introduce the so-called *controllability Gramian*

$$G(t_0, t_f) = \int_{t_0}^{t_f} e^{A(t_f - \tau)} B B^T e^{A^T(t_f - \tau)} d\tau,$$
(4)

and the $\ controllability\ matrix$

$$Q = [B, AB, A^2B, \cdots, A^{n-1}B].$$
 (5)

It is well-known the next characterization theorem

Theorem 1.1. For the linear time invariant system (2) the following statements are equivalent

- (a) (2) is completely controllable;
- (b) the controllability Gramian satisfies $G(t_0, t) > 0$ for all $t > t_0$;
- (c) the controllability matrix Q has rank n (Kalman criterion);
- (d) the rows of $e^{At}B$ are linearly independent functions of time;
- (e) the rows of $(sI A)^{-1}B$ are linearly independent functions of s;
- (f) $rank([A \lambda I, B]) = n$, for all λ (suffices to check only the eigenvalues of

A);

- (g) $v^T B = 0$ and $v^T A = \lambda v^T \implies v = 0$ (Popov-Belevich-Hautus test);
- (h) given any set Γ of numbers in \mathbb{C} there exists a matrix K such that the spectrum of A + BK is equal to Γ (pole placement condition).

2. The result

In order to present our result we introduce some notations. Let Z be a topological space and $Y \subset Z$. By int Y and cl Y we denote the set of interior points, and the closure of Y, respectively. Let Z be a linear space and $Y \subset Z$, then by co Y we denote the convex hull of Y. If X is a Banach space, then by $\mathcal{L}(X)$ we denote the space of linear and bounded operators from X in X. X^{*} is the Banach space of the linear and continuous functionals on X. Let F be a multifunction from a σ -algebra to a topological space. By S_F we denote the set of measurable selections from F. Under convenient assumptions, by S_F^1 we denote the set of Bochner integrable selections from F, see [?], [?], [?].

Consider a real interval $T := [t_0, t_f]$ with $t_0 < t_f$ and μ the Lebesgue measure on T. Let X and Y be separable real Banach spaces. Let $B_{\delta} = \{x \in X \mid ||x|| \le \delta\}$. We denote the closed unit ball by B, too. We consider further

(U) a weakly measurable multifunction $U: T \rightsquigarrow Y$ having nonempty and closed values;

(B) a Carathéodory mapping $B: T \times Y \to X$ (measurable in the first variable and continuous in the second one) such that there exits a positive integrable function

MARIAN MUREŞAN

m defined on T satisfying

$$U(t, u) \subset m(t)B$$
, for all $t \in T$, $u \in U(t)$. (6)

(A) a family $\{A(t)\}_{t \in T}$ of linear and densely defined operators generating an evolution operator $S : \Delta = \{(t, s) \in T \times T \mid t_0 \leq s \leq t \leq t_f\} \to \mathcal{L}(X)$, i.e.

 $S(t,t) = I, \forall t \in T, I$ is the identity,

 $S(t,\tau)S(\tau,s) = S(t,s), \,\forall t_0 \le s \le \tau \le t \le t_f,$

 $S: \Delta \to \mathcal{L}(X)$ is continuous in the strong operator topology, [?].

Also, $B(t, U(t)) := \{x \in X \mid \exists u \in U(t) \text{ with } x = B(t, u)\}$. For $M \subset X$, $M \neq \emptyset$, the support function $\sigma_M(\cdot)$ of M is defined by

$$\sigma_M(x^*) = \sup_{x \in M} (x^*, x) = \sup_{x \in M} x^*(x) = \sigma(x^*(M)), \quad x^* \in X^*.$$

Under the above conditions our attention focuses on the following system

$$x'(t) = A(t)x(t) + B(t, u(t)), \quad t \in T, \ u \in S_U.$$
(7)

Throughout the present paper we are interested in some properties of the mild solutions of the system (7), i.e. given $x_0 \in X$ (as initial value) a mild solution of (7) is a continuous function $x \in C(T, X)$ which can be written as

$$x(t) = S(t, t_0)x_{t_0} + \int_{t_0}^t S(t, s)B(s, u(s))ds, \ t \in T,$$
(8)

where u is a measurable selection of the multifunction U such that $B(\cdot, u(\cdot)) \in L^1$.

The reachable set from x_0 at time $t \in T$ is defined as

$$R(t, x_0) = \{x(t) \in X \mid x(\cdot) \text{ is a mild solution of } (7)\}.$$

Different notions of controllability are investigated in [?] and [?]. We now recall here only one in [?]. System (7) is said to be *approximately locally null*controllable if there exists an open neighborhood V of the origin such that for all $x_0 \in V, 0 \in cl(R(t_f, x_0)).$

Remarks 2.1.

(a) From (U) it follows that $S_U \neq \emptyset$; moreover, from the Castaing representation theorem, [?, theorem 5.6], [?, theorem 4.2.3], or [?, p. 76] it follows that there exists a countable family of measurable functions $\{u_n\}_{n\geq 1}$ such that $U(t) = \operatorname{cl}\{u_n(t) \mid n \geq 1\}$, for all $t \in T$.

CONSTRAINT CONTROLLABILITY IN INFINITE DIMENSIONAL BANACH SPACES

- (b) The multifunction U has closed values. Then, by [?, theorem 6.5] the multifunction T ∋ t → B(t, U(t)) is weakly measurable. Since B(t, U(t)) ⊂ m(t)B, t ∈ T, and each mapping B(·, u_n(·)) is a measurable selection of B(·, U(·)), we conclude that the multifunction B(·, U(·)) has a family (B(·, u_n(·)))_n of integrable selections. Thus the definition of mild solution in (8) makes sense and the reachable set is nonempty.
- (c) The mapping $T \times Y \ni (t, u) \mapsto S(t_f, t)B(t, u) \in X$ is Carathéodory. As above we conclude that the multifunction

$$[t_0, t] \ni s \mapsto S(t, s)B(s, U(s))$$

is weakly measurable, for all $t \in [t_0, t_f]$.

Theorem 2.1. Suppose the assumptions (U), (B), and (A) are satisfied. Then

(a) if S(t_f,t)B(t,U(t)) ≠ {0} on a set of positive Lebesgue measure and (7) is approximately locally null-controllable, then there exists x* ∈ X* \ {0} and E ⊂ T Lebesgue measurable such that

$$\mu(E) > 0, \text{ and } 0 < \sigma(x^*(S(t_f, t)B(t, U(t)))), \forall t \in E;$$

(b) if 0 ∈ B(t,U(t)) a.e. and for every x* ∈ X* \ {0} there exists E ⊂ T Lebesgue measurable with μ(E) > 0 such that for all t ∈ E σ(x*(S(t_f,t)B(t,U(t)))) > 0, system (7) is approximately locally nullcontrollable.

Proof. (a) From the definition of approximately locally null-controllability we have that there is a positive δ such that for all $x_0 \in \operatorname{int}(B_{\delta})$ it holds that $0 \in \operatorname{cl}(R(t_f, x_0))$. Then $0 \leq \sigma(x^*(\operatorname{cl}(R(t_f, x_0))))$. Also $0 \leq \sigma(x^*(R(t_f, x_0)))$. Using theorem 2.2 in [?], we have

$$\begin{aligned} 0 &\leq \sigma(x^*(R(t_f, x_0))) \\ &= \sigma(x^*(S(t_f, t_0)x_0)) + \sigma(x^*(\int_{t_0}^{t_f} S(t_f, t)B(t, u(t))))dt \\ &= \sigma(x^*(S(t_f, t_0)x_0)) + \int_{t_0}^{t_f} \sigma(x^*(S(t_f, t)B(t, u(t))))dt, \end{aligned}$$

MARIAN MUREŞAN

for any $x_0 \in int(B_{\delta})$ and $x^* \in X^*$. Therefore we can write

$$0 \leq \int_{t_0}^{t_f} \sigma(x^*(S(t_f, t)B(t, u(t))))dt.$$

Since $S(t_f, t)B(t, U(t)) \neq \{0\}$ on a set of positive Lebesgue measure, we see that there exists $x^* \in X^* \setminus \{0\}$ and $E \subset T$ Lebesgue measurable, with $\mu(E) > 0$ such that $0 < \sigma(x^*(S(t_f, t)B(t, U(t))))$, for all $t \in E$.

(b) Choose $x^* \in X^* \setminus \{0\}$. Then choose $E \subset T$ Lebesgue measurable with $\mu(E) > 0$ such that for all $t \in E \sigma(x^*(S(t_f, t)B(t, U(t)))) > 0$. Thus we can define the nonempty multifunction L as

$$E \ni t \rightsquigarrow L(t) := \{ u \in U(t) \mid x^*(S(t_f, t)B(t, u)) > 0 \}.$$

We consider the following mapping

$$E \times Y \ni (t, u) \mapsto g(t, u) := x^*(S(t_f, t)B(t, u))$$

and remark that it is Carathéodory. Then by theorem 6.5 in [?] the multifunction

$$E \ni t \rightsquigarrow H(t) := x^*(S(t_f, t)B(t, U(t)))$$

is weakly measurable, hence graph measurable. Recalling that g is Carathéodory and using corollary 6.3 in [?], we have that the set

$$\{(t, u) \mid x^*(S(t_f, t)B(t, u)) > 0\}$$

is measurable. Then the multifunction L is graph measurable since

$$graph(L) = graph(H) \cap \{(t, u) \mid x^*(S(t_f, t)B(t, u)) > 0\}$$

Using the Aumann selection theorem, we get a measurable selection u_1 from L such that $u_1(t) \in L(t)$, a. e. on E.

Now as we mentioned in (c) of Remarks 2.1 the mapping

$$T \times Y \ni (t, u) \mapsto S(t_f, t)B(t, u)$$

is Carathéodory. U has complete values. Then by theorem 6.5 in [?] the multifunction

$$T \ni t \rightsquigarrow S(t_f, t)B(t, U(t))$$

is weakly measurable. Thus it is graph measurable. By hypothesis $0 \in S(t_f, t)B(t, U(t))$, for all $t \in T$. Then by theorem 7.2 in [?], we get a measurable selection $u_2(t) \in U(t)$, $t \in T$, such that

$$0 = S(t_f, t)B(t, u_2(t)),$$
 a.e.

The selections u_1 and u_2 are integrable, too. Thus we can define

$$\hat{u} = \chi_E u_1 + \chi_{T \setminus E} u_2 \in S_U^1.$$

Let $\hat{x} \in C(T, X)$ be the (unique) mild solution generated by \hat{u} and starting from the origin, i.e., $x_0 = 0$. Then we have

$$\begin{aligned} x^*(\hat{x}(t_f)) &= \int_{t_0}^{t_f} \sigma(x^*(S(t_f, t)B(t, \hat{u}(t))))dt \\ &= \int_E \sigma(x^*(S(t_f, t)B(t, u_1(t))))dt > 0 \end{aligned}$$

Thus

$$\sigma(x^*(R(t_f, 0))) > 0.$$

Since $x \mapsto \sigma(x^*(R(t_f, x)))$ is continuous, we can find $\delta > 0$ such that for all $x \in \text{int } B_{\delta}$ we have $\sigma(x^*(R(t_f, x))) > 0$. Then $0 \in \text{clco}R(t_f, x) = \text{cl}R(t_f, x)$ for all $x \in \text{int } B_{\delta}$ and thus system (7) is approximately locally null-controllable.

Now the proof is complete.

Remarks 2.2.

- (a) Our theorem 2.1 is related to theorem 2.2 in [?].
- (b) In theorem 2.2 in [?] the multifunction U is considered having convex values and being on a weakly compact subset of Y. We need not such an assumption of convexity of U. Regarding the second assumption, we have required instead that U is integrably bounded.
- (c) In theorem 2.2 in [?] the Carathéodory mapping B has linear growth. We need not such an assumption.

References

BABEŞ-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, M. KOGĂLNICEANU 1, 3400 CLUJ-NAPOCA, ROMANIA *E-mail address:* mmarian@math.ubbcluj.ro