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CONSTRAINT CONTROLLABILITY IN INFINITE DIMENSIONAL
BANACH SPACES
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Dedicated to Professor Wolfgang W. Breckner at his 60th anniversary

Abstract. Some well known criteria of controllability of linear and time

invariant systems in Rn has been extended in various directions. First

we review briefly this topic. Then we introduce a necessary and sufficient

criterion of approximately locally null-controllability for a system of differ-

ential equations in infinite dimensional Banach spaces. Several comments

end the paper.

Introduction

Let Rn be the n-dimensional Euclidean space. Denote by W an open neigh-

borhood of a point x0 ∈ Rn. Consider the following system of differential equations

x′(t) = f(t, x(t), u(t)), x(t0) = x0, t ∈ T (1)

where T is an interval (bounded or not), t0 ∈ T, T 3 t 7→ x(t) ∈ Rn is the state

trajectory, and T 3 t 7→ u(t) ∈ U ⊂ Rm is the control function.

Example. If f is a linear functions and the dynamics of system (1) is time invariant,

we get the simplest case

x′(t) = Ax(t) + Bu(t), A ∈ Mn×n, B ∈ Mn×m. (2)

Roughly speaking, (1) is said to be controllable if every state is accessible

from every other state.

We mention some topics and works related to the idea of controllability
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• controllability in the time invariant case in finite dimensional spaces, [?],

[?] and the references therein;

• controllability in the non-linear case in finite or infinite dimensional spaces,

fixed point method, [?], [?], [?], [?], [?];

• controllability of convex processes in finite dimensional spaces, [?], [?], [?],

[?];

• constraint controllability in Banach spaces, [?], [?], [?], [?], [?], [?], [?], [?],

[?], [?];

• approximate null controllability of certain differential inclusions in infinite

dimensional Banach spaces, [?].

1. Linear case in finite dimensional spaces

In this case we have system (2), i.e.,

x′(t) = Ax(t) + Bu(t), A ∈ Mn×n, B ∈ Mn×m.

If the control function u is (at least) Lebesgue integrable, the general solution of the

above system is

x(t) = eAtx(t0) +
∫ t

t0

eA(t−τ)Bu(τ) dτ, t ∈ T. (3)

Following [?] we say that system (1) is (completely) state

(i) approximately controllable on the finite interval [t0, tf ] ⊂ T if given ε > 0

and two arbitrary initial and final points x0 and xf in the state space there is an

admissible controller u(·) on [t0, tf ] steering x0, along a solution curve of (1), to an

ε-ball of x1, that is such that ‖x(tf , t0, x0, u)− x1‖ ≤ ε.

(ii) exactly controllable on [t0, tf ] if ε = 0 in (i).

To system (2) we introduce the so-called controllability Gramian

G(t0, tf ) =
∫ tf

t0

eA(tf−τ)BBT eAT (tf−τ)dτ, (4)

and the controllability matrix

Q = [B,AB,A2B, · · · , An−1B]. (5)

It is well-known the next characterization theorem
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Theorem 1.1. For the linear time invariant system (2) the following state-

ments are equivalent

(a) (2) is completely controllable;

(b) the controllability Gramian satisfies G(t0, t) > 0 for all t > t0;

(c) the controllability matrix Q has rank n (Kalman criterion);

(d) the rows of eAtB are linearly independent functions of time;

(e) the rows of (sI −A)−1B are linearly independent functions of s;

(f) rank([A− λI, B]) = n, for all λ (suffices to check only the eigenvalues of

A);

(g) vT B = 0 and vT A = λvT =⇒ v = 0 (Popov-Belevich-Hautus test);

(h) given any set Γ of numbers in C there exists a matrix K such that the

spectrum of A + BK is equal to Γ (pole placement condition).

2. The result

In order to present our result we introduce some notations. Let Z be a

topological space and Y ⊂ Z. By intY and clY we denote the set of interior points,

and the closure of Y, respectively. Let Z be a linear space and Y ⊂ Z, then by coY

we denote the convex hull of Y. If X is a Banach space, then by L(X) we denote the

space of linear and bounded operators from X in X. X∗ is the Banach space of the

linear and continuous functionals on X. Let F be a multifunction from a σ-algebra to

a topological space. By SF we denote the set of measurable selections from F. Under

convenient assumptions, by S1
F we denote the set of Bochner integrable selections

from F, see [?], [?], [?].

Consider a real interval T := [t0, tf ] with t0 < tf and µ the Lebesgue measure

on T. Let X and Y be separable real Banach spaces. Let Bδ = {x ∈ X | ‖x‖ ≤ δ}.

We denote the closed unit ball by B, too. We consider further

(U) a weakly measurable multifunction U : T  Y having nonempty and

closed values;

(B) a Carathéodory mapping B : T×Y → X (measurable in the first variable

and continuous in the second one) such that there exits a positive integrable function
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m defined on T satisfying

U(t, u) ⊂ m(t)B, for all t ∈ T, u ∈ U(t). (6)

(A) a family {A(t)}t∈T of linear and densely defined operators generating an

evolution operator S : ∆ = {(t, s) ∈ T × T | t0 ≤ s ≤ t ≤ tf} → L(X), i.e.

S(t, t) = I, ∀t ∈ T, I is the identity,

S(t, τ)S(τ, s) = S(t, s), ∀ t0 ≤ s ≤ τ ≤≤ t ≤ tf ,

S : ∆ → L(X) is continuous in the strong operator topology, [?].

Also, B(t, U(t)) := {x ∈ X | ∃ u ∈ U(t) with x = B(t, u)}. For M ⊂ X, M 6= ∅, the

support function σM (·) of M is defined by

σM (x∗) = sup
x∈M

(x∗, x) = sup
x∈M

x∗(x) = σ(x∗(M)), x∗ ∈ X∗.

Under the above conditions our attention focuses on the following system

x′(t) = A(t)x(t) + B(t, u(t)), t ∈ T, u ∈ SU . (7)

Throughout the present paper we are interested in some properties of the

mild solutions of the system (7), i.e. given x0 ∈ X (as initial value) a mild solution

of (7) is a continuous function x ∈ C(T,X) which can be written as

x(t) = S(t, t0)xt0 +
∫ t

t0

S(t, s)B(s, u(s))ds, t ∈ T, (8)

where u is a measurable selection of the multifunction U such that B(·, u(·)) ∈ L1.

The reachable set from x0 at time t ∈ T is defined as

R(t, x0) = {x(t) ∈ X | x(·) is a mild solution of (7)}.

Different notions of controllability are investigated in [?] and [?]. We now

recall here only one in [?]. System (7) is said to be approximately locally null-

controllable if there exists an open neighborhood V of the origin such that for all

x0 ∈ V, 0 ∈ cl(R(tf , x0)).

Remarks 2.1.

(a) From (U) it follows that SU 6= ∅; moreover, from the Castaing representa-

tion theorem, [?, theorem 5.6], [?, theorem 4.2.3], or [?, p. 76] it follows

that there exists a countable family of measurable functions {un}n≥1 such

that U(t) = cl{un(t) | n ≥ 1}, for all t ∈ T.
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(b) The multifunction U has closed values. Then, by [?, theorem 6.5] the

multifunction T 3 t 7→ B(t, U(t)) is weakly measurable. Since B(t, U(t)) ⊂

m(t)B, t ∈ T, and each mapping B(·, un(·)) is a measurable selection

of B(·, U(·)), we conclude that the multifunction B(·, U(·)) has a family

(B(·, un(·)))n of integrable selections. Thus the definition of mild solution

in (8) makes sense and the reachable set is nonempty.

(c) The mapping T × Y 3 (t, u) 7→ S(tf , t)B(t, u) ∈ X is Carathéodory. As

above we conclude that the multifunction

[t0, t] 3 s 7→ S(t, s)B(s, U(s))

is weakly measurable, for all t ∈ [t0, tf ].

Theorem 2.1. Suppose the assumptions (U), (B), and (A) are satisfied.

Then

(a) if S(tf , t)B(t, U(t)) 6= {0} on a set of positive Lebesgue measure and (7)

is approximately locally null-controllable, then there exists x∗ ∈ X∗ \ {0}

and E ⊂ T Lebesgue measurable such that

µ(E) > 0, and 0 < σ(x∗(S(tf , t)B(t, U(t)))), ∀ t ∈ E;

(b) if 0 ∈ B(t, U(t)) a.e. and for every x∗ ∈ X∗ \ {0} there exists E ⊂ T

Lebesgue measurable with µ(E) > 0 such that for all t ∈ E

σ(x∗(S(tf , t)B(t, U(t)))) > 0, system (7) is approximately locally null-

controllable.

Proof. (a) From the definition of approximately locally null-controllability

we have that there is a positive δ such that for all x0 ∈ int(Bδ) it holds that

0 ∈ cl(R(tf , x0)). Then 0 ≤ σ(x∗(cl(R(tf , x0)))). Also 0 ≤ σ(x∗(R(tf , x0))). Using

theorem 2.2 in [?], we have

0 ≤ σ(x∗(R(tf , x0)))

= σ(x∗(S(tf , t0)x0)) + σ(x∗(
∫ tf

t0

S(tf , t)B(t, u(t))))dt

= σ(x∗(S(tf , t0)x0)) +
∫ tf

t0

σ(x∗(S(tf , t)B(t, u(t))))dt,
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for any x0 ∈ int(Bδ) and x∗ ∈ X∗. Therefore we can write

0 ≤
∫ tf

t0

σ(x∗(S(tf , t)B(t, u(t))))dt.

Since S(tf , t)B(t, U(t)) 6= {0} on a set of positive Lebesgue measure, we see that

there exists x∗ ∈ X∗ \ {0} and E ⊂ T Lebesgue measurable, with µ(E) > 0 such that

0 < σ(x∗(S(tf , t)B(t, U(t)))), for all t ∈ E.

(b) Choose x∗ ∈ X∗ \ {0}. Then choose E ⊂ T Lebesgue measurable with

µ(E) > 0 such that for all t ∈ E σ(x∗(S(tf , t)B(t, U(t)))) > 0. Thus we can define

the nonempty multifunction L as

E 3 t L(t) := {u ∈ U(t) | x∗(S(tf , t)B(t, u)) > 0}.

We consider the following mapping

E × Y 3 (t, u) 7→ g(t, u) := x∗(S(tf , t)B(t, u))

and remark that it is Carathéodory. Then by theorem 6.5 in [?] the multifunction

E 3 t H(t) := x∗(S(tf , t)B(t, U(t)))

is weakly measurable, hence graph measurable. Recalling that g is Carathéodory and

using corollary 6.3 in [?], we have that the set

{(t, u) | x∗(S(tf , t)B(t, u)) > 0}

is measurable. Then the multifunction L is graph measurable since

graph(L) = graph(H) ∩ {(t, u) | x∗(S(tf , t)B(t, u)) > 0}.

Using the Aumann selection theorem, we get a measurable selection u1 from L such

that u1(t) ∈ L(t), a. e. on E.

Now as we mentioned in (c) of Remarks 2.1 the mapping

T × Y 3 (t, u) 7→ S(tf , t)B(t, u)

is Carathéodory. U has complete values. Then by theorem 6.5 in [?] the multifunction

T 3 t S(tf , t)B(t, U(t))
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is weakly measurable. Thus it is graph measurable. By hypothesis 0 ∈

S(tf , t)B(t, U(t)), for all t ∈ T. Then by theorem 7.2 in [?], we get a measurable

selection u2(t) ∈ U(t), t ∈ T, such that

0 = S(tf , t)B(t, u2(t)), a.e.

The selections u1 and u2 are integrable, too. Thus we can define

û = χEu1 + χT\Eu2 ∈ S1
U .

Let x̂ ∈ C(T,X) be the (unique) mild solution generated by û and starting

from the origin, i.e., x0 = 0. Then we have

x∗(x̂(tf )) =
∫ tf

t0

σ(x∗(S(tf , t)B(t, û(t))))dt

=
∫

E

σ(x∗(S(tf , t)B(t, u1(t))))dt > 0.

Thus

σ(x∗(R(tf , 0))) > 0.

Since x 7→ σ(x∗(R(tf , x))) is continuous, we can find δ > 0 such that for all x ∈ int Bδ

we have σ(x∗(R(tf , x))) > 0. Then 0 ∈ clcoR(tf , x) = clR(tf , x) for all x ∈ int Bδ and

thus system (7) is approximately locally null-controllable.

Now the proof is complete.

Remarks 2.2.

(a) Our theorem 2.1 is related to theorem 2.2 in [?].

(b) In theorem 2.2 in [?] the multifunction U is considered having convex

values and being on a weakly compact subset of Y. We need not such an

assumption of convexity of U. Regarding the second assumption, we have

required instead that U is integrably bounded.

(c) In theorem 2.2 in [?] the Carathéodory mapping B has linear growth. We

need not such an assumption.
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