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ADJOINTS OF LIPSCHITZ MAPPINGS

ŞTEFAN COBZAŞ

Dedicated to Professor Wolfgang W. Breckner at his 60th anniversary

Abstract. The aim of this paper is to show that the Lipschitz adjoint of

a Lipschitz mapping F , defined by I. Sawashima, Lecture Notes Ec. Math.

Syst., Vol. 419, Springer Verlag, Berlin 1975, pp. 247-259, corresponds in

a canonical way to the adjoint of a linear operator associated to F .

1. Introduction

Let X be a metric space with a distinguished point e (a fixed point in X

which is taken to be the zero element if X is a normed space). A metric space X with

a distinguished point e is called also a pointed metric space. For a Banach space Y

denote by Lip0(X,Y ) the space of all Lipschitz mappings F : X → Y vanishing at e.

Equipped with the norm

L(F ) = sup{‖F (x1)− F (x2)‖/‖x1 − x2‖ : x1, x2 ∈ X, x1 6= x2}

Lip0(X,Y ) becomes a Banach space. For Y = R one puts Lip0(X) = Lip0(X,R). It

was shown by Arens and Eels [5] (see also [19]) that Lip0(X) is even a dual Banach

space, i.e. there exists a Banach space Z such that Lip0(X) is isometrically isomorphic

to Z∗.

Banach spaces of Lipschitz functions, called also Lipschitz duals, were used

by various mathematicians as a framework to extend results from linear functional

analysis to the nonlinear case. For instance, Schnatz [18] used them to prove duality

and characterization results in best approximation problems in a linear metric space

X. In this case one could happen that the dual X∗ of X be trivial, X∗ = {0}, so

that the methods of linear functional analysis doesn’t work. Sawashima [17] defined
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ŞTEFAN COBZAŞ

Lipschitz duals of Lipschitz mappings and proved some nonlinear ergodic theorems

(see also [14] and [16]).

Lipschitz mappings were also considered in the attempt to develop a nonlinear

spectral theory, see [2], [4], [15]. The paper [8] contains a survey on extension results

for Lipschitz mappings and their connections to some best approximation problems

in spaces of Lipschitz functions.

The aim of this paper is to show that, for a normed space X, the realization

of Lip0(X) as a dual space can be pushed a little further to obtain a correspondence

between Lipschitz duals of Lipschitz mappings and the adjoints of some linear opera-

tors. This fact allows to prove some results for Lipschitz mappings by reducing them

to the linear case.

2. The Lipschitz adjoint of a Lipschitz mapping

We shall present first the construction of Arens and Eels [5] (see also [19,

p.38]) of the space for which Lip0(X) is the dual space. Remark that another, less

explicit, realization of Lip0(X) as a dual space was given by de Leeuw [10] (see also

[19, p. 33]).

Let (X, ρ) be metric space. A molecule on X is a function m : X → R

with finite support σ(m) = {x ∈ X : m(x) 6= 0}, and such that
∑

x∈X m(x) = 0.

Denote by M(X) the space of molecules on X. For x, y ∈ X put mx,y = hx − hy,

where hx denotes the characteristic function of the set {x}. One can show that every

m ∈M(X) can be written, in at least one way, in the form m =
∑n

i=1 aimxi,yi
. Put

‖m‖AE = inf{
n∑

i=1

|ai|ρ(xi, yi) : m =
n∑

i=1

aimxi,yi
}.

It follows that ‖ ‖AE is a norm on the vector space M(X). Denote by AE(X) the

completion of the normed space (M(X), ‖ ‖AE). The application iX : X → AE(X)

defined by

iX(x) = mx,e (1)

is an isometric embedding of X into AE(X). Define S : AE(X)∗ → Lip0(X) by

(Sϕ)(x) = ϕ(mx,e), ϕ ∈ AE(X)∗. (2)

It follows that S is a nonexpansive linear mapping

L(Sϕ) ≤ ‖ϕ‖, ϕ ∈ AE(X)∗.
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Define now an application R : Lip0(X) → AE(X)∗ in the following way. For f ∈
Lip0(X) let first

(Rf)(m) =
∑

x

m(x)f(x), m ∈M(X). (3)

Since

|(Rf)(m)| ≤ L(f)‖m‖AE

it follows that Rf is a continuous linear functional on M(X), which uniquely extends

to a continuous linear functional on the completion AE(X) of M(X), denoted by the

same symbol Rf . Therefore Rf ∈ AE(X)∗ and

‖Rf‖ ≤ L(f), f ∈ Lip0(X).

Straightforward calculations show that R and S are inverses, so that Lip0(X) is

isometrically isomorphic to AE(X)∗.

The Banach space AE(X) has some remarkable properties, from which we

mention the following one, where the application iX is defined by (1).

Theorem 1. [19, Theorem 2.2.4] Let X be a pointed metric space and Y a

Banach space. For every F ∈ Lip0(X,Y ) there exists a unique continuous linear map

Ψ(F ) : AE(X) → Y such that Ψ(F ) ◦ iX = F. Furthermore ‖Ψ(F )‖ = L(F ).

From now on we shall suppose that X and Y are real normed spaces, so that

the distinguished points are their null elements. Sawashima [17] defined the Lipschitz

adjoint (or dual) F# : Lip0(Y ) → Lip0(X) of a Lipschitz map F ∈ Lip0(X,Y ) by the

formula

F#g = g ◦ F, g ∈ Lip0(Y ).

He showed that F# is a continuous linear operator and that

‖F#‖ = L(F ) = ‖F#|Y ∗‖.

We shall show that F# corresponds in a canonical way to the usual adjoint of the

linear operator attached to F by Theorem 1.

Let F ∈ Lip0(X,Y ) and let iX , iY be the isometric embeddings of X,Y into

Lip0(X) and Lip0(Y ), respectively (see (1)). Let Ψ(F ) : AE(X) → Y be the bounded

linear operator attached to F by Theorem 1, and let

Φ = iY ◦Ψ.
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Let also S1, R1, and S2, R2 be the linear isometries between the spaces

Lip0(X) and AE(X)∗, and Lip0(X) and AE(X)∗, respectively (see the formulae (2)

and (3)).

Theorem 2. We have

F# = S1 ◦ Φ(F )∗ ◦R2 or, equivalently, Φ(F )∗ = R1 ◦ F# ◦ S2

i.e. the following diagrams are commutative:

AE(Y )∗
Φ(F )∗−−−−→ AE(X)∗

R2

x S1

y
Lip0(Y ) F#

−−−−→ Lip0(X)

or, equivalently,

AE(Y )∗
Φ(F )∗−−−−→ AE(X)∗

S2

y R1

x
Lip0(Y ) F#

−−−−→ Lip0(X)

Proof.

We have

Φ(mx,0) = iY (Ψ(F )(mx,0) = iY (F (x)) = mF (x),0. (4)

Put

T = S1 ◦ Φ(F )∗ ◦R2,

Therefore
(S1ϕ)(x) = ϕ(Mx,0), x ∈ X, ϕ ∈ AE(X)∗.

Φ(F )∗(ψ) = ψ ◦ Φ(F ), ψ ∈ AE(Y )∗,

(R2g)(m) =
∑
y∈Y

m(y)g(y), g ∈ Lip0(Y ), m ∈M(Y ).

Taking into account these formulae, the definitions of the operators R and S,

and formula (4), we obtain successively:

(Tg)(x) = (S1 ◦ Φ(F )∗ ◦R2)(g)(x) = S1(Φ(F )∗(R2g))(x)

= S1((R2g) ◦ Φ(F ))(x) =

= ((R2g) ◦ Φ(F ))(mx,0) =

= (R2g)(mx,0) = g(F (x)) = (g ◦ F )(x) = F#(g)(x).

Theorem 2 is proved. 2

We conclude by some open questions. Schauder theorem on the compactness

of the adjoint of a compact linear operator between two Banach spaces is well known:
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If A : X → Y is linear and compact then its adjoint A∗ : Y ∗ → X∗ is also compact.

In connection with this property we raise the following problems.

Problem 1. Which conditions on a Lipschitz operator F ∈ Lip0(X,Y ) entail

the compactness of the associated operator Φ(F ) : AE(X) → AE(Y ) ?

Problem 2. Prove a Schauder type theorem for the Lipschitz adjoint F# of a

Lipschitz operator F ∈ Lip0(X,Y ).

Yamamuro [20] defined another kind of adjoint of a Fréchet differentiable

mapping and proved a Schauder type theorems for such adjoints. Yamamuro defined

the adjoint of a Fréchet differentiable mapping F of a Hilbert space X into itself as a

mapping G : X → X such that G′ = (F ′)∗, where A∗ denotes the Hilbert adjoint of

a continuous linear operator A on X. A thorough study of compactness for nonlinear

mappings and their adjoints is done by Batt [6], but his results do not cover the

Lipschitz case considered here. Lipschitz duals and duals of Lipschitz mappings were

considered in [14, 16] too.

A natural hypothesis for Problem 2 would be the compactness of F , meaning

that it sends bounded sets into relatively compact sets. To work with compact sets in

Lip0(X,Y ) we need compactness criteria in spaces of Lipschitz functions. As pointed

out J. Appel [1], there are no such criteria, and it turned out that some existing

ones were false (e.g. those in [11] or [12]). In this context the following problem is

apparently still open:

Problem 3. Find compactness criteria in the space Lip0(X,Y ).

In [9] we have proved a compactness criterium, but only for families of contin-

uous Fréchet differentiable Lipschitz operators defined on an open subset of a Banach

space X and with values in another Banach space Y .
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ŞTEFAN COBZAŞ
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