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Abstract. Let U be the unit disc of the complex plane: U ={z∈ C, |z|< 1}
and An =

{
f ∈ H (U) , f (z) = z + an+1z

n+1 + an+2z
n+2 + ..., z ∈ U

}
, and

the class of starlike functions in U , S∗(α) =

{
f ∈ A, Re

zf ′ (z)

f (z)
> α, z∈ U

}
the class of starlike functions of order α. We consider the integral operator

F (z) =
1 + γ

zγ

z∫
0

f (t) tγ−1dt and we study its starlikeness properties.

1. Introduction

In this paper a α order starlikeness condition for Bernardi operator is ob-

tained. This condition is on extension of the results of Gh. Oros, see [1], which is

obtained from our result for α = 1.

Lemma A. [2] Let q the univalent function in U and let θ and φ be analytic

functions in the domain D ⊂ q (U) with φ (w) 6= 0, when w ∈ q (U) .

Set

Q (z) = nzq′ (z) φ [q (z)]

h (z) = θ [q (z)] + Q (z)

and suppose that:

i) Q is starlike

and

ii) Re
zh′ (z)
Q (z)

= Re
[
θ′ [q (z)]
φ [q (z)]

+
zQ′ (z)
Q (z)

]
> 0.

If p is analytic in U , with

p (0) = q (0) , p′ (0) = ... = p(n−1) (0) = 0, p (U) ⊂ D
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and

θ [p (z)] + zp′ (z)φ [p (z)] ≺ θ [q (z)] + zq′ (z) φ [q (z)]

then p ≺ q, and q is the best dominant.

2. Main results

Theorem 1. Let γ ≥ 0, α > 0 and

h (z) =
1

1− αz
+

nαz

(1− αz) (1 + γ − αγz)
(1)

If f ∈ An and
zf ′ (z)
f (z)

≺ h (z)

then

Re
zF ′ (z)
F (z)

>
1

1 + α

where

F (z) =
1 + γ

zγ

z∫
0

f (t) tγ−1dt (2)

Proof. From 2 we deduce

γF (z) + zF ′ (z) = (γ + 1) f (z) (3)

If we consider

p (z) =
zF ′ (z)
F (z)

then (3) becomes
zp′ (z)

p (z) + γ
+ p (z) =

zf ′ (z)
f (z)

But
zf ′ (z)
f (z)

≺ h (z)

implies
zp′ (z)

p (z) + γ
+ p (z) ≺ h (z)

We apply Lemma 1 to prove that:

Re
zF ′ (z)
F (z)

>
1

1 + α

We have:

q (z) =
1

1− αz
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θ (w) = w

φ (w) =
1

w + γ

θ [q (z)] =
1

1− αz

φ [q (z)] =
1− αz

1 + γ − αγz

Q (z) = nzq′ (z) φ [q (z)] =
nαz

(1− αz) (1 + γ − αγz)
.

h (z) = θ [q (z)] + Q (z) =
1

1− αz
+

nαz

(1− αz) (1 + γ − αγz)
Because Q is starlike and Re φ [q (z)] > 0,from Lemma 1 we deduce

p ≺ q ⇔ zF ′ (z)
F (z)

≺ 1
1 + αz

⇒ Re
zF ′ (z)
F (z)

>
1

1 + α

The last relation is equivalent to

F ∈ S∗
(

1
1 + α

)
Remark. For α = 1 we obtain the result of Gh. Oros [1].

Corollary 1. Let

h (z) =
1

1− z
+

nαz

(1− z) (2− z)

If f ∈ A and
zf ′ (z)
f (z)

≺ h (z)

then

Re
zF ′ (z)
F (z)

>
1
2

where

F (z) =
2
z

z∫
0

f (t) dt

Proof. In Theorem 1 we put α = 1, γ = 1, n = 1.

Corollary 2. Let

h (z) =
1

1− 2z
+

nαz

(1− 2z) (1 + γ − 2γz)

If f ∈ An and
zf ′ (z)
f (z)

≺ h (z)
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then

Re
zF ′ (z)
F (z)

>
1
3

where

F (z) =
1 + γ

zγ

z∫
0

f (t) tγ−1dt

Proof. In Theorem 1 we put α = 2.

Theorem 2. Let γ ≥ 0, α > 0 and

h (z) =
1 + αz

1− αz
+

2nαz

(1− αz) (1 + γ − (1− γ)αz)
(4)

If f ∈ An and
zf ′ (z)
f (z)

≺ h (z)

then

Re
zF ′ (z)
F (z)

>
1− α

1 + α

where

F (z) =
1 + γ

zγ

z∫
0

f (t) tγ−1dt (5)

Proof. From (5) we deduce:

γF (z) + zF ′ (z) = (γ + 1) f (z) (6)

Let

p (z) =
zF ′ (z)
F (z)

Then (3) becomes

zp′ (z)
p (z) + γ

+ p (z) =
zf ′ (z)
f (z)

But
zf ′ (z)
f (z)

≺ h (z)

implies
zp′ (z)

p (z) + γ
+ p (z) ≺ h (z)

We use Lemma 1 to prove that:

Re
zF ′ (z)
F (z)

>
1− α

1 + α
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We have:

q (z) =
1 + αz

1− αz

θ (w) = w

φ (w) =
1

w + γ

θ [q (z)] =
1 + αz

1− αz

φ [q (z)] =
1− αz

1 + γ − (1− γ) αz

Q (z) = nzq′ (z) φ [q (z)] =
2nαz

(1− αz) (1 + γ − (1− γ)αz)

h (z) = θ [q (z)] + Q (z) =
1 + αz

1− αz
+

2nαz

(1− αz) (1 + γ − (1− γ) αz)

Because Q is starlike and Re φ [q (z)] > 0 from Lemma 1 we deduce :

p ≺ q ⇔ zF ′ (z)
F (z)

≺ 1 + αz

1− αz
⇒ Re

zF ′ (z)
F (z)

>
1− α

1 + α

The last relation is equivalent to

F ∈ S∗
(

1− α

1 + α

)
Remark. For α = 1 we obtain the result of Gh. Oros [1].

Corollary 3. Let

h (z) =
1 + 2z

1− z

If f ∈ A and
zf ′ (z)
f (z)

≺ h (z)

then

Re
zF ′ (z)
F (z)

> 0

where

F (z) =
2
z

z∫
0

f (t) dt

Proof. In Theorem 2 we put α = 1, γ = 1, n = 1.

Corollary 2. Let

h (z) =
1 + 2z

1− 2z
+

4nz

(1− 2z) (1 + γ + 2 (1− γ) z)
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If f ∈ An and
zf ′ (z)
f (z)

≺ h (z)

then

Re
zF ′ (z)
F (z)

> −1
3

where

F (z) =
1 + γ

zγ

z∫
0

f (t) tγ−1dt

Proof. In Theorem 2 we put α = 2.
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