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QUASILINEARIZATION FOR THE FORCED DÜFFING EQUATION

ADRIANA BUICĂ

Abstract. In this paper we present the quasilinearization method for the

periodic problem related to the forced Düffing equation. We obtain two

monotone sequences of approximate solutions, with quadratic order of con-

vergence. We work in the presence of lower and upper solutions. The

approximate problems are linear.

1. Introduction

In this paper we apply the quasilinearization method to the periodic problem

for the forced Düffing equation

 x′′ + kx′ + f(t, x) = 0

x(0) = x(T ), x′(0) = x′(T )

where f : [0, T ] × R → R is a continuous function and k ∈ R. Existence of a lower

and an upper solution is assumed. We say that α0 is a lower solution of the problem

(1.1) if α0 ∈ C2[0, T ] and

 α′′0 + kα′0 + f(t, α0) ≥ 0

α0(0) = α0(T ), α′0(0) = α′0(T )

Whenever the reversed inequality holds for some function β0 ∈ C2[0, T ], we say that

β0 is an upper solution.
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We consider the following iterative schemes

 α′′n+1 + kα′n+1 + f (t, αn) + ∂f
∂x (t, αn) (αn+1 − αn) = 0,

αn+1(0) = αn+1(T ), α′n+1(0) = α′n+1(T )
(1.1)

 β′′n+1 + kβ′n+1 + f (t, βn) + ∂f
∂x (t, αn) (βn+1 − βn) = 0,

βn+1(0) = βn+1(T ), β′n+1(0) = β′n+1(T ).
(1.2)

The sequences (αn)n≥0 and (βn)n≥0 obtained as solutions of the linear problems

(1.1) and (1.2) are monotone and converge quadratically to the solution of (1.1). In

addition, we require, roughly speaking, that the nonlinear function f is decreasing

and convex.

We say that a sequence (αn)n≥0 converges quadratically to x∗ in C[0, T ] (with the

supremum norm), whenever there exist c > 0 and n0 ∈ N such that

||x∗ − αn+1|| ≤ c||x∗ − αn||2, for all n ≥ n0.

The type of problems which is the object of our work is extensively studied in the

literature. Let us remind only some references which are related to the technique

used in our paper. The method of lower and upper solutions for (1.1) is presented by

Wang-Cabada-Nieto in [11], together with a monotone iterative method . C. Wang

[10] studied the case of reversedly lower and upper solutions.

The quasilinearization method is a tool for obtaining approximate solutions to

nonlinear equations with rapide convergence. It was applied to a variety of problems

(see the monograph [8] by Lakshmikantham-Vatsala and the references therein), and

even some very efficient abstract schemes were given in [2, 3, 4]. Some boundary value

problems were studied with the quasilinearization method in [5, 6, 8, 9]. Our approach

is closely to [6] and some examples in [8], since we prefer to assume convexity for the

nonlinear part and obtain the approximations as solutions of corresponding linear

problems, rather than do not impose convexity but consider nonlinear approximate

problems (like in [5, 9]). Anyway, our results can be easily extended to the case of

nonlinearities of DC-type (i.e. f = f1 − f2, where f1 and f2 are convex), as in [8].
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2. Preliminaries

The aim of this section is to establish some comparison and existence results

for the linear problem of the form (1.1), which will be needed later on.

Lemma 2.1. Let g, l : [0, T ] → R be two continuous functions with l(t) < 0

for every t ∈ [0, T ]. Let x ∈ C2[0, T ] be such that − (x′′ + kx′ + l(t)x) = g(t)

x(0) = x(T ), x′(0) = x′(T ).

If g(t) ≥ 0 for all t ∈ [0, T ] then x(t) ≥ 0 for all t ∈ [0, T ].

Proof. First we prove by contradiction that x(0) ≥ 0. Let us assume that x(0) < 0.

We distinguish three cases: x′(0) = 0; x′(0) < 0 and x′(0) > 0. Every case lead to

(S) there exists t1 ∈ (0, T ) such that x(t1) < 0 and x′(t1) = 0.

Then t1 is a local minimum for x, which also implies that x′′(t1) > 0. When we

replace these in the following relation

− [x′′(t1) + kx′(t1) + l(t1)x(t1)] = g(t1)

we get a contradiction.

Let us prove now the above statement (S).

Case 1. Whenever x′(0) = 0, if we replace in the differential equation of x, we obtain

x′′(0) ≤ −l(0)x(0) < 0. Then x′ is strictly decreasing in some neighborhood of 0, V .

But x′(0) = 0. Thus x′(t) < 0 for all t ∈ V . Hence x is strictly decreasing in V .

Relation x(0) = x(T ) assures that (S) is valid.

Case 2. Whenever x′(0) < 0 we have that x′(t) < 0 in some neighborhood of 0. The

rest is like in Case 1.

Case 3. Whenever x′(0) > 0 we have that, also, x′(T ) > 0. Then x is strictly

increasing in some neighborhood of T . Relation x(0) = x(T ) guarantees (S).

Hence we know that x(0) = x(T ) ≥ 0. It is easy to see that the existence of some

t∗ ∈ (0, T ) with x(t∗) < 0 assures that (S) hold. But this lead to a contradiction, as

we have already proved. Then x(t) ≥ 0 for all t ∈ [0, T ]. �
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Lemma 2.2. Let l : [0, T ] → R be a continuous function with l(t) < 0 for all

t ∈ [0, T ]. Then the problem (2.3) has a unique solution for every g ∈ C[0, T ].

Proof. We apply Theorem 3.1, page 214 from [7] and deduce that it is sufficient

if we prove that the only solution of the corresponding homogeneous equation with

x(0) = x(T ) and x′(0) = x′(T ) is the null solution. It is easy to see that this is valid

on the base of Lemma 2.1. �

Throughout this paper let us consider

D =
{
x ∈ C2[0, T ] : x(0) = x(T ), x′(0) = x′(T )

}
.

Lemma 2.3. Let l : [0, T ] → R be a continuous function with l(t) < 0 for all

t ∈ [0, T ]. The linear operator L : D → C[0, T ], Lx = − (x′′ + kx′ + l(t)x) is bijective

and its inverse is positive and completely continuous between C[0, T ] to itself.

Proof. The bijectivity of L is assured by Lemma 2.2. It is easy to see that L is

continuous from D endowed with C2 norm

||x||C2 = ||x||+ ||x′||+ ||x′′||,

to C[0, T ] with the supremum norm, denoted here || · ||. Then L−1 exists and is

continuous between C[0, T ] and D. Of course, is continuous between C[0, T ] to itself.

Complete continuity of L−1 is assured because, in addition, D is compactly imbedded

in C[0, T ]. The positivity of L−1, i.e. y ≥ 0 implies L−1y ≥ 0, follows by Lemma 2.1.

�

3. Main results

Throughout this section let us denote

Ω = {(t, u) ∈ [0, T ]× R : α0(t) ≤ u ≤ β0(t)}

and consider the order interval in the space C[0, T ],

[α0, β0] = {x ∈ C[0, T ], α0(t) ≤ x(t) ≤ β0(t) for all t ∈ [0, T ]} ,

where α0, β0 ∈ C[0, T ] with α0(t) ≤ β0(t) for all t ∈ [0, T ]. The following Lemma is a

unicity result for the nonlinear problem (1.1).
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Lemma 3.1. Let f : [0, T ] × R → R be continuous and α0, β0 ∈ D, be a

lower and, respectively, an upper solution of (1.1), such that

α0(t) ≤ β0(t) for all t ∈ [0, T ].

Assume that f(t, ·) is C1 on R and ∂f
∂x (t, u) < 0 for all (t, u) ∈ Ω. Then (1.1) has at

most one solution in [α0, β0].

Proof. Whenever x and y are two solutions of (1.1) in [α0, β0], we have that z = x−y

satisfies the following relations

−(z′′ + kz′) = f(t, x(t))− f(t, y(t)) = l(t)z,

where

l(t) =


f(t,x(t))−f(t,y(t))

x(t)−y(t) , x(t) 6= y(t)
∂f
∂x (t, x(t)), x(t) = y(t).

It easy to see that l(t) < 0 for all t ∈ [0, T ] and that z ∈ D. We apply Lemma 2.2

and obtain that z = 0, i.e. x = y. �

The next theorem is our main result.

Theorem 3.1. Let f : [0, T ] × R → R be continuous and α0, β0 ∈ D, be a

lower and, respectively, an upper solution of (1.1), such that

α0(t) ≤ β0(t) for all t ∈ [0, T ].

Assume that f(t, ·) is C2 on R and convex on [α0(t), β0(t)] for all t ∈ [0, T ], and

that ∂f
∂x (t, u) < 0 for all (t, u) ∈ Ω. Then the sequences (αn) and (βn) given by the

iterative schemes (1.1) and (1.2) are well and uniquely defined in D, and converge

monotonically and quadratically in C[0, T ] to the unique solution of (1.1) in [α0, β0] .

Proof. The fact that αn and βn are well and uniquely defined in D is assured by

Lemma 2.2.

The differentiability and convexity of f(t, ·) on [α0(t), β0(t)] imply the following rela-

tions

∂f

∂x
(t, u)(v − u) ≤ f(t, v)− f(t, u) ≤ ∂f

∂x
(t, v)(v − u), (3.3)
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for all α0(t) ≤ u ≤ v ≤ β0(t).

We shall prove by induction that the following proposition is valid for all n ≥ 0.

(Pn)


αn ≤ αn+1 ≤ βn+1 ≤ βn

αn+1 is a lower solution of (1.1)

βn+1 is an upper solution of (1.1)

Let us verify first for n = 0. In order to avoid some complicated formulas, let us

denote L0x = −
(
x′′ + kx′ + ∂f

∂x (t, α0)x
)
. Using this notation, we can write (1.1) for

n = 0 in the form

L0α1 = f(t, α0)−
∂f

∂x
(t, α0)α0.

Then, using also the fact that α0 is a lower solution, we obtain

L0(α1 − α0) = L0α1 + α′′0 + kα′0 +
∂f

∂x
(t, α0)α0 = α′′0 + kα′0 + f(t, α0) ≥ 0.

By Lemma 2.1, it follows that

α0 ≤ α1.

Analogously one can prove that β1 ≤ β0.

Using one of the inequalities (3.3) we have

L0(β1 − α1) = f(t, β0)−
∂f

∂x
(t, α0)β0 − f(t, α0) +

∂f

∂x
(t, α0)α0 ≥ 0.

Thus, by Lemma 2.1,

α1 ≤ β1.

Let us prove now that α1 is a lower solution of (1.1). We have

α′′1 + kα′1 + f(t, α1) = f(t, α1)− f(t, α0)−
∂f

∂x
(t, α0)(α1 − α0) ≥ 0,

where we have used (1.1) and (3.3) for α0 ≤ α1.

Analogously, β1 is an upper solution for (1.1).

The proof of the fact that, if (Pn) is valid then (Pn+1) is true, can be done in the

same manner as above. In order to avoid the repetion, let us skip it.

At this moment we have that for every n ≥ 0, αn+1 ∈ D is a solution of the linear

differential equation (1.1) and that

α0(t) ≤ α1(t) ≤ ... ≤ αn(t) ≤ ... ≤ β0(t) for all t ∈ [0, T ].

26



QUASILINEARIZATION FOR THE FORCED DÜFFING EQUATION

We shall prove that the sequence (αn) converges uniformly on [0, T ] and its limit is a

solution of (1.1).

For each t ∈ [0, T ], let us denote by x∗(t) the limit of the numerical sequence (αn(t))

and σn(t) = Lαn+1(t), where L is the linear operator between D and C[0, T ] given

by Lx = −(x′′ + kx′ − x). Using (1.1) we get that

σn(t) = f(t, αn) + αn+1(t) +
∂f

∂x
(t, αn(t)). (3.4)

Because the functions f and ∂f
∂x are continuous and the sequence (αn) is bounded in

C[0, T ], we have that (σn) is bounded in C[0, T ]. Also, we can write

αn+1 = L−1σn. (3.5)

By Lemma 2.3, L−1 is completely continuous. Hence the sequence (αn) is compact

in C[0, T ]. It is also monotone. Then it is uniformly convergent to x∗. When we pass

to the limit for n →∞ in (3.5) and (3.4) we get that x∗ = L−1 [f(t, x∗) + x∗]. Thus

x∗ ∈ D and Lx∗ = f(t, x∗) + x∗, which is equivalent to the fact that x∗ is a solution

of the problem (1.1).

Analogously, the sequence (βn) converges uniformly on [0, T ], and its limit is a solution

of (1.1). By Lemma 3.1, the solution is unique in [α0, β0].

In order to justify that the order of convergence of the sequence (αn) to x∗ is 2, we

denote

pn = x∗ − αn

and consider the linear operator L∗x = −
[
x′′ + kx′ + ∂f

∂x (t, x∗)x
]
. Let us remem-

ber that, by convexity of f , ∂f
∂x (t, x∗) ≥ ∂f

∂x (t, αn), since x∗ ≥ αn. The following

inequalities hold.

L∗pn+1 ≤ −
[
p′′n+1 + kp′n+1 +

∂f

∂x
(t, αn)pn+1

]
= −(x′′ + kx′)− ∂f

∂x
(t, αn)x∗ +

[
α′′n+1 + kα′n+1 +

∂f

∂x
(t, αn)αn+1

]
= f(t, x∗)− ∂f

∂x
(t, αn)pn − f(t, αn)

≤
[
∂f

∂x
(t, x∗)− ∂f

∂x
(t, αn)

]
pn

≤ a · p2
n.
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We have used relation (3.3) for αn ≤ x∗. The last inequality is true because the func-

tion ∂f
∂x (t, ·) is monotone increasing and Lipschitz on the compact interval [α0(t), β0(t)]

for each t ∈ [0, T ]. Using the positivity of L−1
∗ , assured by Lemma 2.3, we obtain

0 ≤ pn+1 ≤ aL−1
∗

(
p2

n

)
,

and than, continuity of L−1
∗ gives that there exists c > 0 with

||pn+1|| ≤ c||pn||2.

In the same manner one can prove the quadratic convergence of (βn). �
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