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NUMERICAL SOLUTION OF THE KORTEWEG - DE VRIES
BURGERS EQUATION BY USING QUINTIC SPLINE METHOD

TALAAT EL SAYED ALI EL DANAF

Abstract. In this work we will discuss the solution of the modified Burgers

equation by using the collocation method with quintic splines. The test

problem will be obtained discuss the accuracy of this problem. We make

a comparison between the numerical and exact solution of the modified

Burgers equation. The last section to discuss the stability analysis of this

method.

1. Introduction

In this paper we will introduce a numerical solution for the Korteweg -de

Vries Burgers equation (KdVB) which is a non-linear partial differential equation

which involves both damping and dispersion take the following form

ut + εuux − νuxx + µuxxx = 0 (1)

This equation was derived by Su and Gardner [1] for a wide class of nonlinear system in

the weak non-linearity and long wavelength approximation. The steady state solution

of the KdVB equation has been shown to model [2] weak plasma shocks propagation

perpendicularly to a magnetic field. When diffusion dominates dispersion the steady

state solutions of the KdVB equation are monotonic shocks, and when dispersion

dominates, the shocks are oscillatory. The KdVB equation has been obtained when

including electron inertia effects in the description of weak nonlinear plasma waves

[3]. The KdVB equation has also been used in a study of wave propagation through

liquid field elastic tube [4] and for a description of shallow water waves on viscous fluid

[5]. Canosa and Gazdag [6], who discussed the evolution of non-analytic initial data

into a monotonic shock, have given brief details of a numerical solution for the KdVB

equation using the accurate space derivative method. In this chapter we will use the

finite element method with Quintic Spline interpolation function, and we will show
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the state of solution in variant times. Grad and Hu [3] showed that the dissipation

effects dominate over dispersive effect when:

4µ ≤ ν2 (2)

In this case the solution of (1) is a shock decreasing monotonically from the upstream

to the downstream value of u. if

ν2 < 4µ (3)

The dispersive effects dominate over the dispative effects; in this case the shock be-

comes oscillatory upstream and monotonic downstream. In this work we introduce

the Quintic Spline with finite element method to solve the KDVB equation, and dis-

cuss the stability and the accuracy of this solution comparing with the exact solution

[7] with some initial and boundary conditions.

2. Exact Solution of the KdVB Equation

In this section we will introduce the exact solution of the KdvB equation

which appeared at the first time for the two dimensional KdVB equation at [7]. We

modify the solution to take the form:

12ν2

εµ

[
1− e

2ν
εµ (x−ωt)

(e
ν

εµ (x−ωt) + E)2

]
(4)

where E,is a positive constant, ω = 12ν2

25µ , ε is the coefficient of the nonlinear term,

ν is the viscosity coefficient and µ is the coefficient of the disperisive term. We note

that the accuracy of the numerical solution depend on E.

3. Numerical Solution of the KdVB Equation with Collocation Quintic

Spline Method

Consider the KdVB equation (1), where the ε is a positive parameter and

the subscripts x, and t indicate to the differentiation with respect to x and t. The

boundary conditions are chosen from:

u(a, t) = 1, u(b, t) = 0

ux(a, t) = 0 = ux(b, t)

uxx(a, t) = 0 = uxx(b, t)
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Consider xi = a + ih, h = b−a
N , i = −3,−2, ..., N + 3. Then Π := a = x0 < x1 < ... <

xn = b is an equal distance partition of the interval [a,b] by the knots xi. Define the

quintic B-spline function as

φi(x) = 1
h5



(x− xi−3)5 x ∈ [xi−3, xi−2]

(x− xi−3)5 − 6(x− xi−2)5 x ∈ [xi−2, xi−1]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5 x ∈ [xi−1, xi]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5

−20(x− xi)5 x ∈ [xi, xi+1]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5

−20(x− xi)5 + 15(x− xi+1)5 x ∈ [xi+1, xi+2]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5

−20(x− xi)5 + 15(x− xi+1)5 − (x− xi+2)5 x ∈ [xi+2, xi+3]

0 otherwise.

and let φi(x), be those quintic splines, for i = 0, 1, , N . Let

xn = span{φ−2, φ−1, φ0, φ1, ..., φN+1, φN+2}

form a basis for the function defined over [a, b], where the values of the quintic splines

φi(x) , and all its first, and second derivatives vanishes outside the interval [xi−3, xi+3].

We establish the value of φi(x) and its derivatives in the following table:

Table 1
x xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3

φ 0 1 26 66 26 1 0

φ
′

0 5
h

50
h 0 −50

h
−5
h 0

φ
′′

0 20
h2

40
h2

−120
h2

40
h2

20
h2 0

φ
′′′

0 60
h3

−120
h3 0 120

h3
60
h3 0

Our task is to find an approximate solution uN (x, t) to the solution u(x, t) in the

form:

uN (x, t) =
N+2∑
i=−2

φi(xj)δi(t) (5)

Where δi are unknowns dependent on time to be determined. Substitute

from the values of φi(x) and its derivatives into (1), and suppose that δi are linearly
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interpolated between two levels n and n + 1 by

δi = θδn+1
i + (1− θ)δn

i

Where 0 ≤ θ ≤ 1 is a parameter at the time n∆t . The time derivative descriptive

using the finite difference formula

dδ

dt
=

δn+1
i − δn

i

∆t

We get
N+2∑
i=−2

(φi +
θε∆t

h
φ

′

i − ν
θ∆t

h2
φ

′′

i + µ
θ∆t

h3
φ

′′′

i )δn+1
i =

=
N+2∑
i=−2

(φi +
(1− θ)ε∆t

h
φ

′

i − ν
(1− θ)∆t

h2
φ

′′

i + µ
(1− θ)∆t

h3
φ

′′′

i )δn
i (6)

Giving the parameter θ the value 1/2 we get the Crank-Nicolson formula

which implies the recurrence relation

N+2∑
i=−2

(φi+
ε∆t

2h
φ

′

i−ν
∆t

2h2
φ

′′

i +µ
∆t

2h3
φ

′′′

i )δn+1
i =

N+2∑
i=−2

(φi+
ε∆t

2h
φ

′

i−ν
∆t

2h2
φ

′′

i +µ
(∆t

2h3
φ

′′′

i )δn
i

(7)

Applying the boundary condition we can eliminate δ−2, δ−1, δN+1 and δN+2

to get the following system of non linear equations:

aiδ
n+1
i−2 +biδ

n+1
i−1 +ciδ

n+1
i +diδ

n+1
i+1 +eiδ

n+1
i+2 = a

′

iδ
n
i−2+b

′

iδ
n
i−1+c

′

iδ
n
i +d

′

iδ
n
i+1+e

′

iδ
n
i+2 (8)

We can write this system of equations in the form

A [δ] δn+1 = B [δ] δn (9)

where the matrices and are Penta-diagonal matrices. The elements of the matrices

and are given by:

ai = 1− r1zi−2 − r2 + r3, a
′

i = 1 + r1zi−2 + r2 + r3

bi = 26− 10r1zi−2 − 2r2 + 2r3, b
′

i = 26 + 10r1zi−2 + 2r2 − 2r3

ci = 66 + 6r2, c
′

i = 66− 6r2

di = 26 + 10r1zi−2 − 2r2 − 2r3, d
′

i = 26− 10r1zi−2 + 2r2 + 2r3

ei = 1 + r1zi−2 − r2 + r3, e
′

i = 1− r1zi−2 + r2 − r3 (10)

44
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where

r1 =
5εδt

2h
, r2 =

10νδt

h2
,

r3 =
30µδt

h3
,

zi−2 = δi−2 + 26δi−1 + 66δi + 26δi+1 + δi+2

To solve this system we apply at first the initial condition to determine

δ0
−2, δ−1, δ

0
0 , ..., δ0

N , δ0
N+1, δ

0
N+2

When t = 0, equation (6) takes the formula

u0
N (x, t) =

N+2∑
i=−2

φi(xj)δi(t)0 (11)

The approximate solution must satisfy the following:

(a). It must agree with the initial condition u (x, 0) at the knots and

(b). The first, second, and third derivatives of the approximate initial condition agree

with those of the exact initial conditions at both ends of the range. So we get the

system:

Aδ0 = u0(x) (12)

Where A is (N + 5)x(N + 5) square matrix which can be restored by the

Penta -diagonal algorithm to (N + 1)x5. In the following we will give an illustration

to point out how to as an example to compute the element of the matrix A. substitute

from (8),(10) and (11) in (12)we have,

a
′

0δ
0
−2 + b

′

0δ
0
−1 + c

′

0δ
0
1 + d

′

0δ
0
1 + e

′

0δ
0
2 = u0(x0)

i.e.

(1 + r1z−2 + r2 + r3)δ0
−2 + (26 + 10r1z−2 + 2r2 − 2r3)δ0

−1 + (66− 6r2)δ0
0+

+(26− 10r1z−2 + 2r2 + 2r3)δ0
1 + (1− r1z−2 + r2 − r3)δ0

2 = u0(x0) (13)

45



TALAAT EL SAYED ALI EL DANAF

Substitute the values of r1, r2, and z−2 in (13) and use the boundary condi-

tions to eliminate δ−2 and δ−1 to get the first row in the matrix A and so on.

A =



54 60 6 0 0 0 · · · 0 0 0 0 0

25.25 67.5 26.25 1 0 0 · · · 0 0 0 0 0

1 26 66 26 1 0
...

...
...

...
...

...

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

... 1 26 66 26 1

0 · · · · · · · · · · · · · · · · · · · · · · · · 6 60 54


,

By solving the system (13) we get {δ0
−2, δ

0
−1, δ

0
0 , ..., δ0

N , δ0
N+1, δ

0
N+2}. So we

iterate by using the Pascal program, and hence the solution of equation (1) written

as:

u(x, t) = δi−2 + 26δi−1 + 66δi + 26δi+1 + δi+2 (14)

4. Stability Analysis

We apply the Von-Neumann stability for equation (9) so we must linearize

this equation and put the nonlinear term as zi−2 = d + 26d + 66d + 26d + d = 120d,

according to the Von-Neuman we have

δn
j = εneikxj (15)

Hence after dividing by at both sides of equation (9) with the help of equation

(16) we get

g =
A + iB

A− iB
(16)

where

g =
εn+1

εn
,

A = 4 cos2(kh) + 26 cos2(
kh

2
) + 3 + r2(cos(kh) + 2)(cos(kh)− 1)

A1 = 4 cos2(kh) + 26 cos2(
kh

2
) + 3− r2(cos(kh) + 2)(cos(kh)− 1)

B = 4r2 sin(kh)(cos2(frackh2) + 5) + 4r3 sin(kh)(cos(kh)− 1) (17)

We note that A1 < A2 , so

| g| = | A2 + B2

A2
1 + B2

| ≤ 1

Which means that the Quintic Splines method is unconditionally stable.
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5. Test Problem

Canoza and Gazdag [4] have shown that the steady state solution for the

KdvB equation with boundary conditions u(a, t) = 1 and u(b, t) = 0, exhibits different

Behaviour depending on the relative values of ν and µ: (a)it is a shock wave decreasing

monotonically from upstream to downstream if

ν2 ≥ 4µ

(b) it is a shock wave which becomes oscillatory upstream and monotonic downstream

if

ν2 < 4µ

These observations are confirmed in the following simulations take the initial condition

as the step function

u(x, t) =

 1 if 0 ≤ x ≤ 150,

0 if x > 150.
(18)

With µ and like Canoza and Gazdag [4] when ν = 6.0, and 0.1 and 0.05. So

we take the boundary conditions as:

u(0, t) = 1, u(220, t) = 0,

ux(0, t) = 0 = ux(220, t) (19)

Now we make some comparison between the exact solution (4) with ε = 2

and the parameter E = 1000. Note. The value of the constant E is large to be in the

neighborhood of the boundary conditions.

6. Graphics

In this section we plot some graphics to note the behaviour of our numerical

solution at some various values of the viscosity and dispressive coefficients, as follows.

Figures(1.a-1.f) show the behavior of the computed solution with, ν = 5, µ =

6 it means that ν2 near to 4µ and at time step ∆t = 0.02, and ∆x = 0.55 It is

confirmed that when the viscosity value is large (ν=5) then numerical solution of the

KdVB equation is a shock wave decreasing monotonically from the upstream to the

downstream value of the solution [5]. Similar shock wave solutions have been obtained

for Burgers’ equation [6,7].
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Figures (2a-2f) show the behavior of the solution from t=0sec to t=50sec,

with ν = 1, µ = 20 ,∆t = 0.02, and ∆x = 0.55. We see that oscillations is increasing

with respect to the time, but it is still stable.

48



NUMERICAL SOLUTION OF THE KORTEWEG - DE VRIES BURGERS EQUATION

Figures (3.a - 3.f) show the behavior of the numerical solution at ν = 2 and

µ = 4, which means that ν2 ≡ 4µ , which give a very smooth solution, and we will

discuss the errors later.

49



TALAAT EL SAYED ALI EL DANAF

Figures (4.a - 4.f), show the behaviour of the computed solution for ν = 0.05

at times from t = 0 to t = 50. When viscosity value is small the numerical solution of

the KdVB equation is a shock wave which becomes oscillatory upstream and mono-

tonic downstream confirming the theoretical treatment [8,9,10]. These graphs also

show that as n is decreased further the computed solutions become more oscillatory.

The results are consistent with graphs presented by Vliegenthart for KdV equation,

where for identical initial conditions similar behavior is observed [8].
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7. Computational Results

In this section we compare between the numerical and exact solution for the

KdVB equation and the errors of the Collocation method at each time step
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Table 2

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines atν = 5, µ = 6,∆t = 0.02sec and ε = 2for the time t = 10Sec.

to t = 60Sec.

Time(Sec) 10 20 30 40 50 60

L2x103 0.0010 0.0012 0.0013 0.0012 0.0012 0.0011

L∞x103 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003

As we note from table 2 the numerical results are very close to the exact results

atnu = 5, µ = 6t = 10sec, and ∆t = 0.02sec, ∆x = 0.73cm. For the time increases

the results are still close to the exact one which means that the method is very

accurate. The errors are given in the following table.

Table 3

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines ν = 1, µ = 2,∆t = 0.02sec and ε = 2for the time t = 10Sec. to

t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2x103 0.0005 0.0006 0.0008 0.0010 0.0012 0.0016

L∞x103 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table 4

gives the relation between the numerical and exact solution of KdV-Burgers

equation by using Collocation method atν = 0.05µ = 1, t = 10sec, ∆t = 0.02sec and

ε = 2

Time (Sec) 10 20 30 40 50 60

L2x103 1.1723 1.2886 1.3618 1.4161 1.4598 1.4964

L∞x103 0.6 0.6 0.6 0.6 0.6 0.6

As we said before the numerical solution to the KdVB equation by using the Collo-

cation method depends on the ratio ν2

4µ << 1, and when the ratio is very closed the

solution is more accurate and the method is very good to examine
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Table 5

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines atµ = 10, ν = 1,∆t = 0.02sec and ε = 2 for the time t = 10Sec.

to t = 60Sec.

Time(Sec) 10 20 30 40 50 60

L2x103 60.534 66.394 70.084 72.821 75.013 76.847

L∞x103 23.865 23.866 23.867 23.868 23.869 23.870

Table 6

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines atµ = 1, ν = 2,∆t = 0.02sec and ε = 2 for the time t = 10Sec.

to t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2 x 103 0.0032 0.0032 0.0031 0.0031 0.0031 0.0031

L∞ x 103 0.0013 0.0014 0.0014 0.0014 0.0014 0.00014

Table 7

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines at µ = 0.1, ν = 0.005,∆t = 0.02sec and ε = 2 for the time

t = 10Sec. to t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2 x 103 0.0128 0.0144 0.0154 0.0160 0.0167 0.0171

L∞ x 103 0.0059 0.0060 0.0063 0.0060 0.0065 0.0059

Table 8

The errors for the numerical solution of the KdvB equation by using Collocation with

quintic Splines at µ = 0.1, ν = 0.005,∆t = 0.02sec and ε = 2 for the time t = 10Sec.

to t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2 x 103 8x10−5 8x10−5 8x10−5 8x10−5 8x10−5 8x10−5

L∞ x 103 5x10−5 5x10−5 5x10−5 5x10−5 5x10−5 5x10−5

8. Conclusion

The finite element method with the quintic spline is capable of producing an

accurate and stable numerical solution for the Korteweg-de Vries-Burgers’ equation

even while the values of the viscosity coefficient are small [11]. The linear stability
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analysis shows that the numerical scheme is unconditionally stable. This is the first

trail to compute numerically, the solution of the KDVB equation. So, this work

compares the numerical solution of the KDVB equation with the exact one. But,

there is no available other numerical example in the literatures to compare with.
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