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ON GAUSS TYPE FUNCTIONAL EQUATIONS AND MEAN
VALUES BY H. HARUKI AND TH. M. RASSIAS

ZHENG LIU

Abstract. In this paper we give a concise summary of some recent results

on Gauss type functional equations and mean values by H. Haruki and Th.

M. Rassias.

1. Introduction

Ten years ago, in [5] Haruki reconsidered the Gauss’ functional equation

f

(
a + b

2
,
√

ab

)
= f(a, b) (a, b > 0), (1.1)

where f : R+ ×R+ → R is an unknown function.

It is well known that f(a, b) = AG(a, b) satisfies (1.1) where AG(a, b) is

the airhtmetic-geometric mean of Gauss of a, b defined as the common limit of the

sequences (an), (bn) given recurrently by

a0 = a, b0 = b, an+1 = (an + bn)/2, bn+1 =
√

anbn.

The result given by Haruki may be stated as follows.

Theorem 1.1. Let f : R+ × R+ → R. If f can be represented by the form,

containing some function p, in R+ ×R+

f(a, b) =
1
2π

∫ 2π

0

p(r)dθ,

where p : R+ → R and p′′(x) is continuous in R+, then the only solution of (1.1) is

given by

f(a, b) = c1
1

AG(a, b)
+ c2, (1.2)

where c1 and c2 are arbitrary real numbers.
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It should be noted that Gauss established an integral representation of

AG(a, b) as

AG(a, b) =

(
1
2π

∫ 2π

0

dθ√
a2 cos2 θ + b2 sin2 θ

)−1

. (1.3)

So, (1.2) can be represented by using (1.3) as

f(a, b) =
c1

2π

∫ 2π

0

dθ√
a2 cos2 θ + b2 sin2 θ

+ c2.

May be motivated by this fact, in [5] Haruki considered the following type

mean value of a, b

M(a, b; p(r)) := p−1

(
1
2π

∫ 2π

0

p(r)dθ

)
,

where p : R+ → R, p′′(x) is a continuous function in R+, p = p(x) is strictly monotonic

in R+, and denote
√

a2 cos2 θ + b2 sin2 θ by r.

The following theorem was proved in [5].

Theorem 1.2. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; p(r)) = AG(a, b) holds for all positive real numbers a, b if and only

if p(r) = c1(1/r) + c2.

(ii) M(a, b; p(r)) = G(a, b) holds for all positive real numbers a, b if and only

if p(r) = c1(1/r2) + c2.

(iii) M(a, b; p(r)) = A(a, b) holds for all positive numbers a, b if and only if

p(r) = c1 log r + c2.

(iv) M(a, b; p(r)) =

√
a2 + b2

2
holds for all positive real numbers a, b if and

only if p(r) = c1r
2 + c2.

(v) There exists no p(r) such that M(a, b; p(r)) = H(a, b) holds for all positive

real numbers a, b.

Since then, around the above two theorems, a series of new generalization

appeared one after another.

We would like to make a survey in this paper.

Throughout this paper, let a and b be two any positive real numbers. A

mean value of a, b, denoted by M(a, b) is defined to be a real-valued function M ,

which satisfies the following postulates:

(P1) M : R+ ×R+ → R;

(P2) M(a, b) = M(b, a) (symmetry property);
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(P3) M(a, a) = a (reflexivity property).

The arithmetic, geometric, and harmonic mean values of a, b are denoted by

A(a, b), G(A, b) and H(a, b), respectively.

In what follows, we also use the power means defined by

Pq(a, b) =
(

aq + bq

2

) 1
q

for q 6= 0, while, for q = 0,

P0(a, b) = G(a, b).

We denote also the power function

en(x) = xn for n 6= 0

and

e0(x) = log x.

2. Gauss Type Functional Equations

f

(
a + b

2
,

2ab

a + b

)
= f(a, b) (a, b > 0), (2.1)

where f : R+×R+ → R is an unknown function of the above equation. By following

the theory on Gauss’ functional equation (cf. [1], [2], [3], [4]), a new result on this

functional equation is given as

Theorem 2.1. Let f : R+ ×R+ → R be a function. If f can be represented

by

f(a, b) =
1
2π

∫ 2π

0

q(s)dθ (a, b > 0),

where s = a cos2 θ + b sin2 θ, q : R+ → R is a function such that q′′(x) is continuous

in R+, then the only solution of (2.1) is given by

f(a, b) = c1
1√
ab

+ c2,

where c1 and c2 are arbitrary real numbers.

An open problem for the functional equation (2.1) is given as follows:

Let f : R+ × R+ → R be a continuous function in R+ × R+. Is the only

continuous solution of the functional equation (2.1) given by

f(a, b) = F (ab),
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where F : R+ → R is an arbitrary continuous function of a real variable x?

In [13], the author treat the functional equation

f

(√
ab,

2ab

a + b

)
= f(a, b) (a, b > 0), (2.2)

where f : R+ ×R+ → R is an unknown function of the above equation.

By following the theory on Gauss’ functional equation, we obtained

Theorem 2.2. Let f : R+ ×R+ → R be a function. If f can be represented

by

f(a, b) =
1
2π

∫ 2π

0

u(t)dθ (a, b > 0),

where t =
(

cos2 θ

a2
+

sin2 θ

b2

)− 1
2

, u : R+ → R is a function such that u′′(x) is con-

tinuous in R+, then the only solution of (2.2) is given by

f(a, b) = c1GH(a, b) + c2,

where c1 and c2 are arbitrary real numbers.

GH(a, b) is the geometric-harmonic mean of a and b defined as the common

limit of the sequences (an), (bn) given recurrently by

a0 = a, b0 = b, an+1 =
√

anbn, bn+1 =
2anbn

an + bn
.

Also, an open problem for the functional equation (2.2) is given as follows:

Let f : R+ × R+ → R be a continuous function in R+ × R+. Is the only

continuous solution of the functional equation (2.2) given by

f(a, b) = F (GH(a, b)),

where F : R+ → R is an arbitrary continuous function of a real variable x?

In [16], G. Toader considered a more general functional equation

f(Pq(a, b), Ps(a, b)) = f(a, b). (2.3)

Denote

rn(θ) = (an cos2 θ + bn sin2 θ)1/n, n 6= 0

and

r0(θ) = lim
n→0

rn(θ) = acos2 θbsin2 θ.
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For a strictly monotonic function p : R+ → R, consider the function

f(a, b; p, n) =
1
2π

∫ 2π

0

p(rn(θ))dθ. (2.4)

G. Toader proved the following theorem.

Theorem 2.3. If the function f is a solution of (2.3) which can be repre-

sented by (2.4), where p has a continuous second-order derivative in R+, then

p = c1eq+s−n + c2, (2.5)

where c1 and c2 are arbitrary real numbers.

Remark. For n = 2, q = 1 and s = 0, we get the necessity part of Theorem

1.1. For n = 1, q = 1 and s = −1, we get the necessity part of Theorem 2.1. For

n = −2, q = 0 and s = −1, we get the necessity part of Theorem 2.2. In all these

three cases, as we have already mentioned, the condition is also sufficient.

In [17], the following theorem was proved.

Theorem 2.4. If n 6= 0, q = n and s = −n, then the function f given by

(2.4) and p given by (2.5), verifies the relation (2.3).

In [10], Kim and Rassias considered a generalized functional equation, namely

f(P k
q (a, b), P k

s (a, b)) = f(a, b) (2.6)

where

P k
q (a, b) = (ab)(1−k)/2

(
aq + bq

2

) k
q

.

The following theorem was proved.

Theorem 2.5. If the function f is a solution of (2.6) which can be repre-

sented by (2.4), where p has a continuous second-order derivative in R+, then

p = c1e−n+kq+ks + c2,

where c1 and c2 are arbitrary real numbers.

Clearly, Theorem 2.3 is a special case of Theorem 2.5.

In [18], S. Toader, Rassias and G. Toader consider a more general functional

equation

f(M(a, b), N(a, b)) = f(a, b), (2.7)

where M and N are two given means.
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It is not difficult to prove the following theorem.

Theorem 2.6. If the function f defined by (2.4) in case n = 1 is a solution

of (2.6), where p has a continuous second-order derivative in R+, then the function

p is a solution of the differential equation

p′′(c) + 4p′(x)[M ′′
ab(c, c) + N ′′

ab(c, c)] = 0.

Remark. In case n = 1, Theorem 2.3 and Theorem 2.5 can be deduced from

Theorem 2.6.

3. Mean Values by H. Haruki and Th.M. Rassias

In [7], Haruki and Rassias considered the following two mean values of a, b:

M(a, b; q(s)) := q−1

(
1
2π

∫ 2π

0

q(s)dθ

)
,

where q : R+ → R, q′′(x) is a continuous function in R+, q = q(x) is strictly monotonic

in R+, and denote a cos2 θ + b sin2 θ by s; and

M(a, b;u(t)) := u−1

(
1
2π

∫ 2π

0

u(t)dθ

)
,

where u : R+ → R, u′′(x) is a continuous function in R+, u = u(x) is strictly

monotonic in R+, and denote (cos2 θ/a + sinθ /b)−1 by t.

The following two theorems are proved.

Theorem 3.1. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; q(s)) = A(a, b) holds for all positive real numbers a, b if and only

if q(s) = c1s + c2.

(ii) M(a, b; q(s)) = G(a, b) holds for all positive real numbers a, b if and only

if q(s) = c1(1/s) + c2.

(iii) M(a, b; q(s)) = P 1
2
(a, b) holds for all positive real numbers a, b if and

only if q(s) = c1 log s + c2.

(iv) M(a, b; q(s)) =
√

H(a, b)G(a, b) holds for all positive real numbers a, b if

and only if q(s) = c1(1/s2) + c2.

Theorem 3.2. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b, u(t)) = G(a, b) holds for all positive real numbers a, b if and only

if u(t) = c1t + c2.
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(ii) M(a, b, u(t)) = H(a, b) holds for all positive real numbers a, b if and only

if u(t) = c1(1/t) + c2.

(iii) M(a, b, u(t)) = P− 1
2
(a, b) holds for all positive real numbers a, b if and

only if u(t) = c1 log s + c2.

(iv) M(a, b, u(t)) =
√

A(a, b)G(a, b) holds for all positive real numbers a, b if

and only if u(t) = c1t
2 + c2.

Noticed that the geometric-harmonic mean GH(a, b) can be represented by

a first complete elliptic integral as

GH(a, b) =
1
2π

∫ 2π

0

dθ√
cos2 θ

a2
+

sin2 θ

b2

, (3.1)

the author in [12] considered the mean value of a, b

M(a, b; v(z)) = v−1

(
1
2π

∫ 2π

0

v(z)dθ

)
,

where v : R+ → R, v′′(x) is a continuous function in R+, v = v(x) is strictly

monotonic in R+, and denote (cos2 θ/a2 + sin2 θ/b2)−
1
2 by z.

The following theorem is proved.

Theorem 3.3. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; v(z)) = GH(a, b) holds for all positive real numbers a, b if and only

if v(z) = c1z + c2.

(ii) M(a, b; v(z)) = G(a, b) holds for all positive real numbers a, b if and only

if v(z) = c1z
2 + c2.

(iii) M(a, b; v(z)) = H(a, b) holds for all positive real numbers a, b if and only

if v(z) = c1 log z + c2.

(iv) M(a, b; v(z)) = (H(a2, b2))1/2 holds for all positive real numbers a, b if

and only if v(z) = c1(1/z2) + c2.

(v) There exists no v(z) such that M(a, b; v(z)) = A(a, b) holds for all positive

real numbers a, b.

It should be noted that in [8] Kim also considered the mean value M(a, b; v(z))

and got the results (ii), (iii), (iv) of Theorem 3.3.
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In [16] and [17], G. Toader and Rassias considered a generalization of the

above mentioned four mean values M(a, b; p(r)), M(a, b; q(s)), M(a, b;u(t)) and

M(a, b; v(z)) as follows:

Denote

rn(θ) = (an cos2 θ + bn sin2 θ)1/n, n 6= 0,

and

r0(θ) = lim
n→0

rn(θ) = acos2 θbsin2 θ.

For a strictly monotonic function p : R+ → R, set

M(a, b; p, rn) = p−1

(
1
2π

∫ 2π

0

p(rn(θ))dθ

)
.

It is easy to prove that M(a, b; p, rn) is a mean value.

As was stated in Theorem 1.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3,

the means M(a, b; p, rn) can represent some known means for special choice of p and

n. In [10], the following theorem was proved.

Theorem 3.4. If for some twice continuously differentiable function p the

mean M(a, b; p, rn) reduces at the power mean Pq(a, b), then

p = c1e2q−n + c2,

where c1 and c2 are arbitrary real numbers.

In [17], the following theorem was proved.

Theorem 3.5. The mean M(a, b; p, rn) reduces to the power mean Pq(a, b)

for arbitrary n if

p = c1e2q−n + c2, c1, c2 ∈ R

and q takes one of following values; (i) q = 0, (ii) q = n; or (iii) q = n/2.

In [9], Kim considered some further extensions of values by H. Haruki and

Th.M. Rassias as follows:

M(a, b;h(s)) :=
1

H(a, b)
h−1

(
1
2π

∫ 2π

0

h(s)dθ

)
, (3.2)

where h : R+ → R, h′′(x) is a continuous function in R+, h = h(x) is strictly

monotonic in R+, and denote (cos2 θ/a2 + sin2 θ/b2)−1 by s,

M(a, b; k(s)) :=
1

H(a, b)
k−1

(
1
2π

∫ 2π

0

k(s)dθ

)
, (3.3)
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where k : R+ → R, k′′(x) is a continuous function in R+, k = k(x) is strictly

monotonic in R+, and denote (a cos θ)2 + (b sin θ)2 by s.

The following theorems are proved:

Theorem 3.6. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b;h(s)) = A(a, b) holds for all positive real numbers a, b if and only

if h(s) = c1s + c2.

(ii) M(a, b;h(s)) = ab(a + b)/(a2 + b2) holds for all positive real numbers a, b

if and only if h(s) = c1(1/s) + c2.

(iii) M(a, b;h(s)) = H(a, b) holds for all positive real numbers a, b if and only

if h(s) = c1 log s + c2.

(iv) M(a, b;h(s)) =
√

2(a + b)2(ab)2/(3a4 + 3b4 + 2(ab)2) holds for all posi-

tive real numbers a, b if and only if h(s) = c1(1/s2) + c2.

(v) M(a, b;h(s)) =
√

(a2 + b2)(a + b)2/8ab holds for all positive real numbers

a, b if and only if h(s) = c1s
2 + c2.

Theorem 3.7. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; k(s)) = (a2 + b2)(a+ b)/4ab holds for all positive real numbers a, b

if and only if k(s) = c1s + c2.

(ii) M(a, b; k(s)) = A(a, b) holds for all positive real numbers a, b if and only

if k(s) = c1(1/s) + c2.

(iii) M(a, b; k(s)) = (a+b)3/8ab holds for all positive real numbers a, b if and

only if k(s) = c1 log s + c2.

(iv) M(a, b; k(s)) =
√

(ab)(a + b)2/2(a2 + b2) holds for all positive real num-

bers a, b if and only if k(s) = c1(1/s2) + c2.

(v) M(a, b; k(s)) =
√

(a + b)2(3a4 + 3b4 + 2(ab)2)/32(ab)2 holds for all posi-

tive real numbers a, b if and only if k(s) = c1s
2 + c2.

Instead of (3.2) and (3.3), in [14] the author considered in general, the fol-

lowing two mean values of a, b:

M(a, b;h(s), q) :=
1

Pq(a, b)
h−1

(
1
2π

∫ 2π

0

h(s)dθ

)
, (3.4)

and

M(a, b; k(s), q) :=
1

Pq(a, b)
k−1

(
1
2π

∫ 2π

0

k(s)dθ

)
, (3.5)

where h(s) and k(s) are just the same as in (3.2) and (3.3).
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Moreover, denote

sn(θ) = (a2n cos2 θ + b2n sin2 θ)
1
n , n 6= 0,

and

s0(θ) = lim
n→0

sn(θ) = a2 cos2 θb2 sin2 θ.

If p : R+ → R is a strictly monotonic function, then

M(a, b; p, sn; q) =
1

Pq(a, b)
p−1

(
1
2π

∫ 2π

0

p(sn(θ))dθ

)
defines a mean value of a, b. Clearly, (3.4) is given for n = −1 and (3.5) is given for

n = 1.

We have the following two theorems.

Theorem 3.8. If for some twice continuously differentiable function p the

mean M(a, b; p, sn; q) reduces at the power mean Pr(a, b), then

p = c1e(q+r)/2−n + c2,

where c1 and c2 are arbitrary real numbers.

Theorem 3.9. The mean M(a, b; p, sn; q) reduces to the power mean Pr(a, b)

for arbitrary n if

p = c1e(q+r)/2−n + c2, c1, c2 ∈ R

and r takes one of the following values: (i) r = −q or (ii) r = q = n.

In [10], Kim and Rassias considered a new mean value

M(a, b; p, rn,k) := (ab)(1−k)/2p−1

(
1
2π

∫ 2π

0

p(rn,k(θ))dθ

)
(3.6)

where p : R+ → R is a strictly monotonic function, n and k are real numbers,

rn,k(θ) = (akn cos2 θ + bkn sin2 θ)
1
n , n, k 6= 0,

and

r0,k(θ) = lim
n→0

rn,k(θ) = ak cos2 θbk sin2 θ, k 6= 0.

The mean can represent some known means for special choice of p, k and n.

Two well-known examples are given for n = 2, k = 1, p(x) = x−1 and n = −2, k = 1,

p(x) = x respectively. They correspond to the arithmetic-geometric mean of Gauss

(1.3) and geometric-harmonic mean (3.1) respectively.
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Kim and Rassias in [10] also considered the following generalization of the

power means defined by

Hk
q (a, b) = (ab)(1−k)/2

(
2aqbq

aq + bq

)k/q

, k 6= 0

for q 6= 0, while Hk
0 (a, b) = limq→0 Hk

q (a, b) =
√

ab for q = 0.

It is not difficult to prove the following theorems.

Theorem 3.10. If the mean M(a, b; p, rn,k) reduces to the power mean

P k
q (a, b) = Hk

−q(a, b) for some twice continuously differentiable function p, then

p = c1e(2kq−nk2)/k2 + c2,

where c1 and c2 are arbitrary real numbers.

Theorem 3.11. The mean M(a, b; p, rn,k) reduces to the power mean

P k
q (a, b) for some arbitrary n if

P = c1e(2kq−nk2)/k2 + c2, c1, c2 ∈ R

and q takes one of the following values: (i) q = 0, (ii) q = nk; or (iii) q = nk/2.

Theorem 3.12. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; p, r1,k) =
1
2
(ak + bk)(ab)(1−k)/2 holds for all positive real numbers

a, b if and only if p(s) = c1s + c2.

(ii) M(a, b; p, r1,k) = G(a, b) holds for all positive real numbers a, b if and

only if p(s) = c1(1/s) + c2.

(iii) M(a, b; p, r1,k) =
1
4
(ab)(1−k)/2(ak/2 + bk/2)2 holds for all positive real

numbers a, b if and only if p(s) = c1 log s + c2.

(iv) M(a, b; p, r1,k) =
√

2(ab)(k+2)/4

(ak + bk)1/2
holds for all positive real numbers a, b if

and only if p(s) = c1(1/s2) + c2.

(v) M(a, b; p, r1,k) =
[3(a2k + b2k) + 2(ab)k]1/2

[8(ab)(k−1)]1/2
holds for all positive real

numbers a, b if and only if p(s) = c1s
2 + c2.

Theorem 3.13. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; p, r−1,k) = G(a, b) holds for all positive real numbers a, b if and

only if p(s) = c1s + c2.

(ii) M(a, b; p, r−1,k) = 2(ab)(k+1)/2(ak +bk)−1 holds for all positive real num-

bers a, b if and only if p(s) = c1(1/s) + c2.
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(iii) M(a, b; p, r−1,k) = 4(ab)(1+k)/2(ak/2 + bk/2)−2 holds for all positive real

numbers a, b if and only if p(s) = c1 log s + c2.

(iv) M(a, b; p, r−1,k) =
1√
2
(ak + bk)1/2(ab)(2−k)/4 holds for all positive real

numbers a, b if and only if p(s) = c1(1/s2) + c2.

(v) M(a, b; p, r−1,k) =
[8(ab)k+1]1/2

[3(a2k + b2k) + 2(ab)k]1/2
holds for all positive real

numbers a, b if and only if p(s) = c1s
2 + c2.

Instead of (3.6), Rassias and Kim in [15] introduce in general, the following

mean values of a, b:

M(a, b; p, rn,k; q) := [Pq(a, b)](1−k)p−1

(
1
2π

∫ 2π

0

p(rn,k(θ))dθ

)
where p(rn,k(θ)) is just the same as in (3.6).

The following theorems are proved.

Theorem 3.14. If the mean M(a, b; p, rn,k; q) reduces to the power mean

Ps(a, b) for some twice continuously differentiable function p, then

p = c1e 2q(k−1)+2s

k2 −n
+ c2,

where c1 and c2 are arbitrary real numbers.

Theorem 3.15. The mean M(a, b; p, rn,k; q) reduces to the power mean

Ps(a, b) for some arbitrary n if

p = c1e 2q(k−1)+2s

k2 −n
+ c2, c1, c2 ∈ R

and s takes one of the following values: (i) s = q = 0, (ii) s = −q, k = 2, (iii)

s = q = nk; or (iv) s = q = nk/2.
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