
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 4, December 2001

PARALLEL NUMERICAL METHODS FOR SOLVING NONLINEAR
EQUATIONS

IOANA CHIOREAN

1. Introduction

The basis for constructing a parallel algorithm is either a serial algorithm or

the problem itself. In trying to parallelize a serial algorithm a pragmatic approach

would seem reasonable. Serial algorithm are analysed for frequently occurring basic

elements which are then put into parallel form. These parallelization principles rely

on definite serial algorithms. This corresponds to the serial way of thinking normally

encountered in numerical analysis. What is needed is a parallel way of thinking.

In the following, we shall apply these principles to some numerical methods

for solving single non-linear equations.

First we shall consider the one-dimensional case and assume that the real

function f(x) has only one zero in the interval [a, b].

The methods for the determination of zeros can be subdivided into two types:

(i) search methods

(ii) locally iterative methods.

2. Search methods

2.1. The Bisection Method. The simplest search method is the bisection method,

with the following code:

Repeat

c := (a + b)/2;

If f(a) ∗ f(c) > 0 then a := c

else b := c

Until abs(b− a) < ε;

53

IOANA CHIOREAN

Considering f given as a function, continuous over the interval [a, b], the serial

bisection method needs log2((b − a)/ε) function evaluations, additions and multipli-

cations to enclose the zero in an interval of length ε.

We could adapt this serial algorithm at a parallel execution with 3 processors,

by means of three sequences, an, bn and cn, every processor generating one of them:

a[0] := a;

b[0] := b;

c[0] := (a + b)/2;

n := 0;

Repeat in parallel

n := n + 1;

If f(a[n− 1]) ∗ f(c[n− 1]) > 0 then begin

a[n] := c[n− 1];

b[n] := b[n− 1];

c[n] := (a[n] + b[n])/2

end

else begin

a[n] := a[n− 1];

b[n] := c[n− 1];

c[n] := (a[n] + b[n])/2

end

Until abs(b[n]− a[n]) < ε

Unfortunately, this parallel version of the bisection method does not bring

a speed improvement, because, mainly, the number of operations is still of log2((b −

a)/ε) order, and we have to take into account the time spend for the processors

communications.

But, if we think in parallel, the bisection method can clearly be performed

on a computer consisting of r processors: for each iteration step the function is

simultaneously evaluated at r points which thereby subdivide the actual interval in

r + 1 equidistant subintervals. The new interval points are chosen on the basis of the

54

PARALLEL NUMERICAL METHODS FOR SOLVING NONLINEAR EQUATIONS

signs of the function values. So, this parallel bisection method requires logr+1((b −

a)/ε) evaluations. The speed-up ratio is therefore

S =
log2((b− a)/ε)

logr+1((b− a)/ε)
= log2(r + 1).

2.2. Other Search Methods. As we saw, in applying the bisection method it is

sufficient to have a function which is continuous over the interval [a, b]. With functions

having a high degree of smoothness, high order search methods can be constructed,

which will converge yet faster.

The example given by Miranker [5] demonstrates this principle.

Let f(x) be a function which is differentiable over [0, 1] and let f ′(x) ∈ [m,M]

(m,M > 0) for all x ∈ [0, 1]. An algorithm is developed for a computer able to evaluate

this function values yi = f(xi), xi ∈ [0, 1], (i = 1, 2), in parallel.

Initially, two piecewise linear functions S(x), S(x), are defined which enclose

f(x) in [x1, x2] (see Fig.1).

55

IOANA CHIOREAN

We see that S(x) ≤ f(x) ≤ S(x), where

S(x) :=


y1 + M(x− x1), x ≤ (M − s)x1 + (x−m)x2

M −m

y2 + m(x− x2), x ≥ (M − x)x1 + (s−m)x2

M −m

where s :=
y2 − y1

x2 − x1
. In a similar manner we define S(x).

The zero z of f is on the right-hand side of the zero x∗1 of S(x):

z ≥ x∗1 = max
{

x1 −
y1

M
,x2 −

y2

m

}
and

z ≤ x∗2 = min
{

x− y1

m
,x2 −

y2

M

}
.

Considering each possible case, it can be shown that the inequality

x∗2 − x∗1
x2 − x1

≤ 1− m

M

applies.

Comparing this method with the parallelized bisection method it is possible

to obtain a speed-up, provided that

m

M
≥ 2

3

applies.

Remark. Miranker shows, also, that is f ∈ C2[0, 1], the algorithm even has

quadratic convergence.

3. Locally iterative methods

The best known locally iterative methods are the Newton’s method and the

secant method. Because the second one is a discrete version of the first one (the

derivative is replaced by the difference quotient), we shall discuss only the secant

method.

For x0 an initial approximation and supposing, without restriction of gener-

ality, that f ∈ Cd[a, b], f ′(x) 6= 0, for all x ∈ (a, b) and f(a) < 0 and f(b) > 0.

The the serial secant method is the following:

if f(a) · f ′′(a) > 0 then x0 = b else x0 = a; n := 0;

Repeat

56

PARALLEL NUMERICAL METHODS FOR SOLVING NONLINEAR EQUATIONS

n := n + 1;

x[n] := a− b− a

f(b)− f(a)
f(a)

If f(x[n]) < 0 then a := x[n];

else b := x[n]

Until abs(x[n]− x[n− 1]) < ε

Denoting

δk := max |z − x[k]|,

where z is the zero of f , we speak of convergence of order λ, if

lim
k→∞

δk+1

(δk)λ
= c > 0

applies.

It is known that the serial secant method has the order of convergence
1 +

√
5

2
' 1.618 Trying to parallelize this serial algorithm, we can use 3 pro-

cessors to generate the sequences an, bn and cn, according to the following code:

a[0] := a;

b[0] := b;

c[0] := (a[0] ∗ f(b[0])− b[0] ∗ f(a[0]))/(f(b[0])− f(a[0]));

n := 0;

Repeat in parallel

n := n + 1;

if f(c[n− 1]) < 0 then begin

a[n] := c[n− 1];

b[n] := b[n− 1];

c[n] := (a[n] ∗ f(b[n])− b[n] ∗ f(a[n]))/(f(b[n])− f(a[n]))

end

else if f(c[n− 1]) > 0 then

begin

a[n] := a[n− 1];

b[n] := c[n− 1];

c[n] := (a[n] ∗ f(b[n])− b[n] ∗ f(a[n]))/(f(b[n])− f(a[n]))

57

IOANA CHIOREAN

end

Until f(c[n− 1]) = 0;

Unfortunately, this algorithm does not bring an important improvement in

speed-up, because of the time of communication between processors. But we may

think the secant method directly in parallel, as follows.

We imagine an SIMD computer with r processors (see Chiorean [1]). Starting

with approximations x0,1;x0,2; . . . , x0,r of z, it is requires to determine r improuved

approximations

xk+1,i = φk,i(xk,1;xk−1,1; . . . , x0,r)

at every iteration step. Here,

φk,i : R(k+1)r → Rr, k ≥ 0.

According to Corliss [3], the iteration series xk,i remains close to the zero z

if the starting approximation is suitable, and that it will thus finally converge to the

zero.

Taking into account all this, and considering an SIMD parallel computer with

r = 3 processors, the serie xk,i, i = 1, 2, 3 for the secant parallel method is generated

in the following way:

xk+1,1 = xk,1 −
xk,1 − xk,2

f(xk,1)− f(xk,2)
f(xk,1)

xk+1,2 = xk,2 −
xk,2 − xk,3

f(xk,2)− f(xk,3)
f(xk,2)

xk+1,3 = xk,3 −
xk,3 − xk,1

f(xk,3)− f(xk,1)
f(xk,3),

58

PARALLEL NUMERICAL METHODS FOR SOLVING NONLINEAR EQUATIONS

where xk,i are those in the Fig.2.

It can be proved that the order of convergence for this parallel secant method

is 2, compared with 1,618. . . for the serial secant method.

References

[1] Chiorean, I., Calcul paralel. Fundamente, Ed. Microinformatica, 1998.
[2] Coman, Gh., Analiză mumerică, Ed. Libris, Cluj, 1995.
[3] Corliss, G.F., Parallel root finding algorithms, Ph.D. Dep. of Mathematics, Michigan

State Univ., 1974.
[4] Mateescu, G.D., Mateescu, I.C., Analiză numerică, Proiect de manual pentru clasa a

XII-a, Ed. Petrion, 1996.
[5] Miranker, W.L., Parallel search methods for solving equations, Math. Comp. Simul., 20,

2(1978), pp.93-101.

Babeş-Bolyai University, str. Kogălniceanu nr. 1, 3400 Cluj-Napoca,
Romania

59

