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ON A HYBRID FDTD-MoM TECHNIQUE: 2-D CASE

CODRUŢA VANCEA, FLORIN VANCEA,
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Abstract. FDTD techniques offer fast simulations and small memory re-

quirements while MoM is more suitable for free-space field simulations but

needs more processing power and memory. A hybrid method that com-

bines the advantages of both would be highly useful in free-space scattering

simulation.

1. Introduction

The finite-difference time-domain (FDTD) solution of Maxwell’s curl equa-

tions is analogous to existing finite-difference solutions of scalar wave propagation and

fluid-flow problems in that the numerical model is based upon a direct solution of the

governing partial differential equations.

The simplicity and the ability to handle complex geometry make the FDTD

method flexible to implement. It is successfully applied for a wide variety of electro-

magnetic wave interaction problems. FDTD is a nontraditional approach to numeri-

cal electromagnetic wave modeling of complex structures for engineering applications,

where the method of moments has dominated for many years.

A. Some general characteristic of proposed technique. The goal of this paper

is to develop a hybrid technique using FDTD method and MoM technique, combining

the benefits of both while ensuring the stability of the method. The analysis is done

for a combined two-dimensional conducting and dielectric electromagnetic structure.

We must preserve a certain ratio between the spectral component of the

considered impulse with the highest significant frequency and the FDTD grid step,

respectively the time step.

This condition must be also respected inside the dielectric.
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The FDTD method introduces a non-physical dispersion (artificial, numerical

reason) for the phase velocity, dispersion which is more important as the highest

frequency component of the incident wave is represented using less points.

For a pure FDTD simulation, this dispersion must behave like a deformation

of the original impulse, as small as possible to avoid the reflections on the boundary

of the analyzed domain.

The reflection on the boundary of the analyzed domain appear because both

the values of incident wave and MoM - computed scattered field suppose an ideal

behavior of dispersion while the values resulted from FDTD are affected by the nu-

merical dispersion.

Therefore, a grid not fine enough with respect to the shape and duration

of the incident wave impulse leads to unnatural reflections on the boundary, even if

inside the domain the FDTD behavior is acceptable.

B. FDTD algorithm - two dimensional case. The field is described by Maxwell’s

curl equations:
∂H

∂t
= − 1

µ
∇× E (1)

∂E

∂t
=

1
ε
∇×H − σ

ε
E (2)

where E is the electric field in volts/meter; H is the magnetic field in amperes/meter;

ε is the electrical permittivity in farads/meter; σ is the electrical conductivity in

siemens/meter; µ is the magnetic permeability in henrys/meter.

The FDTD algorithm for electromagnetic wave interactions for TM case, with

Ez, Hx and Hy field component only:

∂Hx

∂t
= − 1

µ

∂Ez

∂y
(3)

∂Hy

∂t
= − 1

µ

∂Ez

∂x
(4)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(5)

Then, we use the centered finite-difference expression for the space and time

derivatives:

Fn(i, j) = F (idx, jdy, ndt)
∂Fn(i, j)

∂x
=
Fn(i+ 1/2, j)− Fn(i− 1/2, j)

dx
+O(dx2)
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∂Fn(i, j)
∂t

=
Fn+1/2(i, j)− Fn−1/2(i− 1/2, j)

dt
+O(dt2)

and finally we have the formula:

ψn+4(i, j) = −dtσ(i, j)
ε(i, j)

ψn+3(i, j) + dt
σ(i, j)
ε(i, j)

ψn+1(i, j)− ψn(i, j)+

+
1

µ0ε(i, j)

(
dt

dx

)2

(ψn+2(i+ 1, j) + ψn+2(i− 1, j))+

+
1

µ0ε(i, j)

(
dt

dy

)2

(ψn+2(i, j + 1) + ψn+2(i, j − 1))+

+2

(
1− 1

µ0ε(i, j)

(
dt

dx

)2

− 1
µ0ε(i, j)

(
dt

dy

)2
)
ψn+2(i, j) (6)

where ψ = Ez.

To ensure the stability of the time-stepping algorithm, dt must be chosen to

satisfy the inequality:

cmaxdt ≤ (1/dx2 + 1/dy2)−1/2 (7)

where cmax is the maximum electromagnetic wave phase velocity within the media

being modeled.

2. Formulation of the problem

Let us consider a 2D problem with the layout shown in Fig.1. The analyzed

domain contains a dielectric zone with arbitrary shape and parameters placed in the

proximity of a perfectly conductive material of linear cross-section. The entire system

is illuminated with a plane wave propagating towards the origin at an arbitrary angle.

The wave will produce secondary scattering waves on the dielectric and will reflect

completely on the perfect conductor surface.

We will use during the following computations two boundaries: ∂S∞ the

boundary placed at infinite and ∂Sc united with ∂Sd the boundary of the analyzed
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domain. For simplicity of geometry generation, the conductor is parallel with Oy

axis, but the method allows any placement of it.

Fig.1. Studied case of scattering problem

3. Mathematical formulation

A. General facts. The wave speed in free space: c = 3 ∗ 108m/s

The free space permittivity: ε0 = 8.8419 ∗ 10−12F/m

The free space permeability: µ = 4 ∗ π ∗ 10−7H/m

The dielectric conductivity: σ = 10−9S/m

The dimensions of the analized domain are Lx = 30m, Ly = 20m.

The incident wave is travelling leftwards in the air. It is one cosine impulse

length iw = 4 ∗ 10−9s, starting tangential in zero.

The incidence angle of the wave, counterclockwise from Ox axis is α = π/4.

We must have a fine grid to respect the shape and duration of the incident

wave impulse. This condition will prevent the unnatural reflections on the boundary.

The place occupied in space by the impulse (for 45 degrees incidence):

Impulse length: iw ∗ c = 4 ∗ 10−9 ∗ 3 ∗ 108 = 1.2s

The grid step: dx = dy = dl = 0.1m

Number of nodes: iw/(dl ∗
√

2) = 1.2/(0.1 ∗ 1.414 . . . ) = 8.4
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The phase of the wave, which starts at the far end of domain:

Tph = (Lx ∗ cos(α) + Ly ∗ sin(α))/c

The scattering problem is solved for two shapes of dielectric. More complex

structures of dielectric shapes can be solved in a similar mode.

In this paper, the shapes of dielectric analized are cylindrical with rectangular

and respectively circular cross-sections. The rectangular dielectric is placed in the

centre of analized zone and it has the dimensions Lx/2m,respectively Ly/2m. The

relative permitivity is εrel = 10. The circular cross-section dielectric is also placed

in the centre of the analized zone, with radius Ly/3m. The relative permitivity is

εrel = 2.

B. Green’s theorem. Derivations of integral equations. For the computation

of the field values from the contour we have two Helmholz equations:

∇2ψs
ω +

ω2

c2
ψs

ω = 0 (8)

∇2Gω(r, r′) +
ω2

c2
Gω(r, r′) = −δ(r − r′) (9)

where Gω(r, r′) is the Fourier Transform for Green function, ψs
ω is the scattered field

and r, r′ are the vectors of the position.

δ(r − r′) is Dirac function.

On the conductor, the scattered field is zero: ψs
ω = 0.

For the field computation, we apply the Green’s theorem in time domain on

the area outside ∂Sd, ∂Sc and inside ∂S∞.

ψs(r, t) scattered field

ψ0(r, t) incident wave

ψ(r, t) total field ψ(r, t) = Ez(r, t)

Gω(r, r′) Fourier Transform for Green function

G(r, r′, t− t′) 2D free-space Green function

G(r, r′, t− t′) =
H(t− t′ − u/c)√∣∣∣∣(t− t′)2 − u2

c2

∣∣∣∣
(10)

u = |r − r′|
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H(x) Heaviside unit step function∫∫
s

(Gω(r, r′)∇2ψs
ω(r′)−∇2Gω(r, r′)ψs

ω(r))dxdy =

=
∫

∂S∞

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl+

+
∫

∂Sd

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl+

+
∫

∂Sc

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl (11)

The first integral is zero because the field vanishes at infinity.

Considering ∂Sd + ∂Sc = ∂S, we have:∫∫
S

(δ(r − r′)ψs
ω(r′))dx′dy′ =

∫
∂S

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl (12)

Now we use the Inverse Fourier Transform to transform the Green function

in time domain and we obtain:

ψ(r, t) = ψ0(r, t)+

+
∫

∂Sd

dl

(
G(r, r′, t− t′) ∗ ∂ψ

s(r, t)
∂n

− ∂G(r, r′, t− t′)
∂n

∗ ψs(r, t)
)

+

+
∫

∂Sc

dl

(
G(r, r′, t− t′) ∗ ∂ψ

s(r, t)
∂n

)
(13)

The system of integral equations has the number of equations equal with the

number of points from discretization made on ∂Sd and ∂Sc. For the points on ∂Sc,

the field values ψ(r, t) are zero.
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C. Computation of the convolution integrals. For the derivative of G and ψ,

we have the expressions:

∂G(rc, ndt− t′)
∂n

=
Gcont(ic, jc)−Gint(ii, ji)

dn
;

∂ψs(rc, ndt)
∂n

=
ψs

cont(ic, jc)− ψs
int(ii, ji)

dn
, (14)

where Gcont is the Green function relative to contour nodes, Gint is the Green function

relative to interior-contour nodes, ψcont is the field values on the contour nodes, ψint

is the field values on the interior-contour nodes and the boundary ∂S is equal with

∂Sd + ∂Sc.

Considering the symbol ∗ for the convolution operator, the integral becomes:∫
∂S

dl

(
G(r, r′, t− t′) ∗ ∂ψ

s(r, t)
∂n

− ∂G(r, r′, t− t′)
∂n

∗ ψs(r, t)
)

=

=
∫
∂S

dl
1
dn

(Gcont(r, r′, t− t′) ∗ ψs
int(r, t)−Gint(r, r′, t− t′) ∗ ψs

cont(r, t)) ∼=

∼=
∑

j∈contour

dl

dn
(Gcont(r, r′, t− t′) ∗ ψs

int(r, t)|j −Gint(r, r′, t− t′) ∗ ψs
cont(r, t)|j) (15)

The approach from (15) is correct because we know that for an arbitrary

function f(r), the contour integral over f(r) means sum over all points on the contour:∫
C

f(r)dl ∼=
∑

j∈contour

dlf(r)|j (16)

Moreover, the values for the Green function relative to interior nodes and

contour, respectively, do not change at different time steps and they can be computed

before the loops begin in the program.

Each node pair may use a finite number of such non-zero Green function

values since the Green function for a given u = |r − r′| decays with the inverse of

time. Therefore, a precision of 10−1 will require approximately ten values of the Green

function per node pair.

The definition for the convolution is:

G(r, r′, t− t′) ∗ ψs(r, t) =
∫ t

−∞
G(r, r′, t− t′)ψs(r, t′)dt′ = I(t) (17)

We calculate the integral at time t = (n + 1)dt, so we will make a notation

and then we will write the integral as sum of integrals. The sum can be separated in
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three terms. The first two integrals are evaluated and the rest implies the calcul of

Green function.

I(t)|t=(n+1)dt,r = I(n+1)(r)

I(n+1)(r) =
∫ (n+1)dt

ndt+ dt
2

G(r, r′, t− t′)ψs(r, t′)dt′+

+
∫ dt

2 t

0

G(r, r′, t− t′)ψs(r, t′)dt′ +
n∑

k=1

ψs|r,k′

∫ kdt+ dt
2 t

kdt− dt
2

G(r, r′, t− t′)dt′ (18)

The first integral from (18) is zero for all points except for the reference point

which we neglect. The second integral from (18) is zero because at the beginning the

field value is zero. The last integral is analytically calculated.

For the Green function, we know that:

G(r, r′, t− t′) = 0 for t− t′ < |r − r′|/c;

(or (n+ 1)dt− t′ < |r − r′|/c)
(19)

and
G(r, r′, t− t′) = 1/

√
(t− t′)− |r − r′|2/c2,

for t− t′ > |r − r′|/c;

(or (n+ 1)dt− t′ > |r − r′|/c)

(20)

4. Numerical results

A. Estimation of the error. Estimation of the error arising from neglecting of

I1 =
∫ (n+1)dt

ndt+dt/2

G(r, r′, t− t′)ψ(r, t′)dt′

form sum (18) has the analytical expression:

Er(dt) = πcdt/8

For example, if the time step dt = 10−10 we have

Er(dt) = π · 3 · 108 · 10−10/8 ∼= 0.0117

The above computing coefficient multiplies the field on the interior contour

at time (n+ 1)dt which is not yet known and will be computed using the values from

the whole summation, fed into FDTD method. This leaves us no other choice than

to ignore the whole term when computing the scattered field on the contour at time

(n+ 1)dt.

100



ON A HYBRID FDTD-MOM TECHNIQUE: 2-D CASE

As we know, the relation for computing the scattered field suppose the con-

volution between the wave shape in a point and the correspondent Green function

over time. For computational reason (the occupied memory, the time needed for the

computing) the sum which calculates this integral must be truncated. The sum trun-

cation is another error source that can lead to parasite reflections on the boundary

or to a reduction of the response induced by the conductor on the system.

B. Analysis of the Stability. For the test of the stability, we must run the program

for different steps in space and time. Because the results must be comparable, we

must take the measure to fix the initial conditions of the simulation.

The elements that are fixed (must be fixed) are:

1. the dimension of the analyzed domain

2. the absolute position of the conductor

3. the dimension of the conductor

4. the absolute position of the dielectric

5. the absolute dimension of the dielectric

6. the position of the wave front at starting moment of the simulation.

The absolute position of the conductor doesn’t pose any problem being fixed.

Also the position of the wave front could be chosen at point (Lx, Ly) at moment t = 0.

The simulation implementations in the program groups the sum terms in

order to take advantage of the Green function values duplications for pairs of points

placed at same relative distance.

Let us consider for example the tested geometry. The domain has 31 × 21

points (grid values) and the conductor has 21 × 2 points (grid values) which nor-

mally would require to compute the Green function for 2× 140× 140 points rising to

approximately 39.000 sets of values.

Using the fact that the points on the contour are regularly spaced and the

distances between the pairs of points are repeated, the number of Green function to

compute and, of course, to store is reduced to approximately only 770.

This significant reduction of the necessary memory (of about 50 times), allows

simulations with a step seven times finer (7×7 ∼= 50) than without the optimization.
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CODRUŢA VANCEA, FLORIN VANCEA, NIKOLAOS K. UZUNOGLU AND DIMITRA I. KAKLAMANI

The price paid for these optimizations is solving the problem on a grid with

the step on x equal with the step on y, and uniform distributed on the boundary.

The advantages obtained by indexed computations of Green function remain

valid, but in a lesser way, for non-equal x and y steps, uniform distributed.

The stability of the method is proven by Fig.2 and Fig.3, containing field

plots over space at the same moment of time but being computed with different space

steps. The same stands true for Fig.4 and Fig.5 in the circular section case.
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