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Introduction

Featuring in this presentation:
e Latent Variable models [8].

e Latent Semantic Indexing [2].

Relational Concept Analysis [9].

Interval Pattern Structures [7].

¢ Heterogeneous Pattern Structures.
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Problem definition
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Inspiring example

Latent variables model

Latent variables models (LV-models) (also called “topic models”) use
the notion of hidden latent variables in data to “explain” information [2].
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Inspiring example

Latent variables model
Latent variables models (LV-models) (also called “topic models”) use
the notion of hidden latent variables in data to “explain” information [2].

They work by unveiling these variables and using them to process
data.
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Inspiring example

Latent models available:
¢ Principal Component Analysis (PCA) (1901) [8].
¢ Latent Semantic Indexing/Analysis (LSI/LSA) (1988) [2].
¢ Probabilistic Latent Semantic Indexing (PLSA) (1999) [6].
¢ Latent Dirichlet Allocation (LDA) (2003) [1].
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Inspiring example

Why are latent variables useful? [2, 10, 8]

Several things:
e They can introduce “latent knowledge” not explicit in data.
¢ They can reduce noise.
e They can reduce the search space.

¢ They can reduce sparsity.

¢ They can represent “clusters”.
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Inspiring example

Latent Semantic Indexing

LSl is based on the lower-rank approximation of a document-term*
matrix and the representation of documents in a vectorial space of
latent variables. For both of these issues, it uses the Singular Value
Decomposition process.
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Table: Document-term matrix A.
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Inspiring example

Latent Semantic Indexing
SVD Process:
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Inspiring example
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Table: Documents in 2 LVs. (k=2)

Figure: Graphical representation of documents as
points in a 2 dimensional LV space.
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Inspiring example

Where are the semantics?
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Inspiring example

Where are the semantics?
o |Latent variables are abstractions.

e A given LV or a convex region in a LV-space can represent a topic,
but they lack a proper characterization.

e Cannot introduce external knowledge sources.

I hu'a,— Victor Codocedo, Amedeo Napoli — Pattern Structures and RCA 1



Inspiring example

Formal Concept Analysis [4], on the other hand:

¢ Provides a formal characterization of concepts through the dual
extent/intent descriptions.

¢ Allows the introduction of external knowledge sources through
object relations (RCA).

¢ Allows the analysis of complex data such as convex regions in a
vectorial space (interval pattern structures).
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Definitions
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Scenario

Can we relate convex regions in a LV-space to taxonomical
objects?

annotated with
Documents >

described b isa

LV vectors

In fact, this scenario fits with the Relational Concept Analysis process.
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Definitions

Relational Concept Analysis (RCA) [9]

RCA describes an iterative scaling process to obtain a family of related
concept lattices from a relational context family.
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Ky =(61,M1,11) Table: Relational Context

aw = (G1,G2, Iy)

Table: Formal Context
K2 = (G2,Mp, I2)
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Definitions

Relational Concept Analysis (RCA)

* A relational context family (RCF) is composed by:

- A set of formal contexts K = {1, K, }.
- A set of binary relations R = {aw}.

e A relational context can be also defined as a function
aw : G — G, where dom(aw) = G; and ran(aw) = G,.

o A set of relational attributes is built from the concept lattice of the
formal context with objects ran(aw).

A relational scaling process applied in the formal context with
objects dom(aw) assigns a set of relational attributes to an object
g € G; whenever aw(g) Nextent(C) # 0 (3 quantifier).
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Definitions

@ 2 4 2 [©
¥I={Artefact] | ¥I={Activity] ‘ ¥I={Person} ¥I={Event] ¥I={liness}
¥E={MRI, scan] _¥E: medicine, practice} IE=ires % E={complication, infection}

e

¥I={Activity, Surgery}
% E={arthroscopy, laparoscopy}

¥ I={Activity, Artefact, Event, lliness, Person, Surgery}

¥E={}

Figure: Concept Lattice for Taxonomic annotations £.

RCA - Relational Scaling

aw(gy) Nextent(C4) = {patient,user}

= KW = (G;,M, U{aw: c4},T, U{(g1,aw: C4)})
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Definitions

Relational Concept Analysis
« Formal concepts in K!*) have intents which relate LV with
taxonomical annotations in 1C,.

¢ Nevertheless, K, is a many-valued context. Convex regions in a
LV-space are better described with interval pattern structures
[3, 7].

¢ What happens if we apply relational scaling in a many-valued
formal context? )
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Definitions

D Pr
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g1 0.118 -0.238 X X X X X
9o 0.046 -0.271 X X X X
J3 0.014 | -0.413 X X X X
g4 0.014 -0.368 X X X
g5 0.008 -0.277 X X
J6 0.519 0.002 X X X
a7 0.603 | -0.017 X X X
Js 0.469 0.02 X X X
99 0.588 0.092 X X X

Table: Heterogeneous formal context.

Problems

® Objects are described by heterogeneous patterns mixing values and binary attributes.

® |t becomes necessary to define a proper pattern structure which is able to deal with heterogeneous object
descriptions.
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Proposition

Relational Scaling for pattern structures

Let a RCF contain a relation r where dom(r) is an object set in a
pattern structure K, = (G4, (D, M), d), then we define:

e The set of all relational attributes extracted for relation r as
p,={r:C,VCeL,}.

¢ An assignation function p? : G; — P,, such as:
p2(g) ={r:cep,|r(g)Nextent(C) # 0}.

¢ An heterogeneous set of descriptions H =D x p(P,).

* A mapping A7 : G; — H, such as A3(g) = (6(g9), p2(9)).
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Proposition

Relational Scaling for pattern structures

The relational scaling of the pattern structure (G, (D, M), d) is defined
as:

SC]‘::I(K:;L) = (Gla (H7 |_lH )7 Aa)

Where (G4, (H, My ), A) is called a heterogeneous pattern structure.
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Heterogeneous pattern structures

Properties:

¢ A heterogeneous object description h € H is a pair h = (d, B)
wheredeDandB C P,.

e Forh; =(d;,B;) and h, = (d,, B;), the similarity operator My is
defined as h; My hy = (d; Mdy, B; N By).

e With My, (8, C) is the direct product [4] of the partial orders (D, C)
and (p., C) and thus, it is an ordered set itself.
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Heterogeneous pattern structures

Properties:

« The derivation operators (-)° in (G, (H, My ), A%) fora C G, and
h € H are defined as:

- 2% = []s A3(9).
geA
-h®={g€G <= hLC A3g)}
e (a,h) is a heterogeneous pattern concept iff h® = A and A° = h.
* h° =d” N e, where () is the derivation operator in (G, (D, ), ).
o 7% = p00 a7,

o Ko = (hoIZI h°').
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A simple example

What does a heterogeneous concept represent? Consider the set of
movies liked by a group of people.

rl.-l"

PRUREN 88

A closed concept of movies liked by a certain group of people.
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A simple example

What does a heterogeneous concept represent? Consider the set of
movies liked by a group of people.

In a different description space, these movies are separated.
.&zu’a,— Victor Codocedo, Amedeo Napoli — P




A simple example

What does a heterogeneous concept represent? Consider the set of
movies liked by a group of people.
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Heterogeneous concepts catches both spaces together.
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Proposition

In our example:

¢ (Gy,(D,M),d) is an interval pattern structure of documents
described by convex regions in a LV space.

e K, is a formal context of terms and taxonomical annotations
(Wordnet synsets).

* aw:G; — G, relates documents with a set of annotations (terms).

¢ An heterogeneous pattern concept (hp-concept) (2, h) describes
in its intent a relation between a convex region in the LV space and
a set of taxonomical annotation.

e The set of all hp-concepts generates a set of “labelled clusters” in
the LV space.
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Proposition

In our example:
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Figure: Labelled document clusters using association rules from the hp-lattice with
magnification on documents g, and gs.
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Discussion
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Discussion

Formal Context Constructions
¢ Direct sum:
- K14+ K =(G1 UG, M UM, T1 UT, U(Gy X M) U(Gy X Mp)).
e Semi-product:

- KL XK, = (G1 X Gy, M UMz,V).
) (gl7g2)v(jam) L= ngjm7 fOf j S {1v2}

¢ Direct product:

- K x Ky = (Gl X Gy, M; XM2,V).
- (91,92)V(my,mp) 1 <= g1I1m; OF goIomy.

¢ Heterogeneous composition (if G = G; = G,):

- ICl N’Cz = (G,Ml XMz,V).
- gV(ml,mz) < glimg and glom;.
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Conclusions
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Conclusions

Final remarks:

¢ Latent variable models can benefit from the capabilities of FCA by
allowing an enriched description of otherwise, abstract
characterizations.

¢ The flexibility of pattern structures allows for objects to be
described by mixed representations, i.e. heterogeneous data.

¢ Relational Concept Analysis can be also applied on complex data
by the use of heterogeneous pattern structures.

¢ The use of heterogeneous pattern structures may allow the
implementation of FCA algorithms on further applications of data
mining, such as high-order heterogeneous data co-clustering [5].
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THE END
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